Question

2(a) $x^{2}+y^{2}-12 x+10 y=0$
(i) Centre $=(6,-5)$
B1 1.1 b
(ii)
$(x-6)^{2}+(y+5)^{2}=61$ M1 1.1b

Radius $=\sqrt{61}$
A1 1.1 b
(b) $\quad k=-5+\sqrt{61}$
B1ft 2.2 a
(c)

$$
\begin{array}{c|c}
\text { At } Q, y=-10 & \text { B1 } \\
\text { Area }=\frac{1}{2} \times " 10 " \times " 6 " & \text { M1 } \\
\hline \text { Area }=30 & \text { A1 } \tag{3}
\end{array}
$$

$$
\begin{array}{l|l}
\mathrm{B} 1 & 1.1 \mathrm{~b}
\end{array}
$$

M1 3.1a
A1 1.1 b

Notes:

(a)(i)

B1: Centre $=(6,-5)$
(a)(ii)

M1: Attempts to complete the square to achieve $(x \pm 6)^{2}+(y \pm 5)^{2} \pm \ldots=\ldots$
A1: Radius $=\sqrt{61}$
(b)

B1ft: Deduces that $k==^{\prime \prime}-5^{\prime \prime}+" \sqrt{61} "$ only, where -5 is the y coordinate of their centre and $\sqrt{61}$ is their radius. The y coordinate of the centre must be negative for the follow through.
(c)

B1: y coordinate of Q is -10 seen or implied
M1: A complete method to find the area using the x coordinate of their centre and their y coordinate for Q. Look for $\frac{1}{2} \times 10 " \times " 6 "$.
A1: 30 only.

