3(a)
(b)

$$
y=4 x-3 x^{\frac{3}{2}}+13, \quad y=13-2 x, \quad A(4,5)
$$

$$
y=4(4)-3(4)^{\frac{3}{2}}+13=5 \text { and } y=13-2(4)=5
$$

The curve and the line intersect at $(4,5) *$
$\int 4 x-3 x^{\frac{3}{2}}+13 \mathrm{~d} x=2 x^{2}-\frac{6}{5} x^{\frac{5}{2}}+13 x(+c)$

$$
\begin{gathered}
{\left[2 x^{2}-\frac{6}{5} x^{\frac{5}{2}}+13 x\right]_{0}^{4}-\frac{1}{2} \times 4(13+5)} \\
=\frac{228}{5}-36
\end{gathered}
$$

$$
\text { Area of } R=9.6
$$

(b) Alternative

$\int 4 x-3 x^{\frac{3}{2}}+13-(13-2 x) \mathrm{d} x=3 x^{2}-\frac{6}{5} x^{\frac{5}{2}}(+c)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
$\left[3 x^{2}-\frac{6}{5} x^{\frac{5}{2}}\right]_{0}^{4}=3(4)^{2}-\frac{6}{5}(4)^{\frac{5}{2}}(-0)$	dM1	3.1a
Area of $R=9.6$	A1	1.1b

(6 marks)

Notes:

(a) M1: Attempts to substitute $x=4$ into both $y=4 x-3 x^{\frac{3}{2}}+13$ and $y=13-2 x$.

Alternatively, sets $4 x-3 x^{\frac{3}{2}}+13=13-2 x$, solves, and substitutes $x=4$ into either equation for y A1*: Obtains $y=5$ for both and concludes that the curve and line intersect at $(4,5)$.

In the alternative, solves $4 x-3 x^{\frac{3}{2}}+13=13-2 x$ using correct algebra to achieve $x=4$ and substitutes into either equation for y to achieve $y=5$ and concludes that the curve and line intersect at $(4,5)$.
(b)

M1: For an attempt to integrate $x^{n} \rightarrow x^{n+1}$ for C in at least one term.
A1: Correct integration.
dM1: For the key step in achieving a fully correct strategy for the area, e.g., attempts the trapezium and subtracts from the area enclosed between the curve, the x-axis, the y-axis and $x=4$.
(Condone the omission of the " -0 ")
A1: 9.6o.e. e.g., $\frac{48}{5}$

(b) Alternative

M1: For an attempt to integrate $x^{n} \rightarrow x^{n+1}$ for " $C-l$ " in at least one term.
A1: Correct integration.
dM1: For the key step in achieving a fully correct strategy for the area. (Condone the omission of the "- 0 ")
A1: 9.6 o.e. e.g., $\frac{48}{5}$

