Question	Scheme		Marks	AOs
4(a)	$\mathrm{f}(x)=x^{4}-2 x^{3}-11 x^{2}+12 x+36$			
	$\begin{aligned} f(3)= & (3)^{4}-2(3)^{3}-11(3)^{2}+12(3)+36 \\ & =81-54-99+36+36=\ldots \end{aligned}$		M1	1.1 b
	$\mathrm{f}(3)=0$ hence $(x-3)$ is a factor of $\mathrm{f}(x)$ (by the factor theorem). *		A1*	2.4
			(2)	
(b)	Deduces $a=2$		B1	2.2a
			(1)	
(c)		Shape (positive quartic with two minima).	B1	1.1b
		$(-2,0)$ and $(3,0)$	B1ft	1.1b
		$(0,36)$	B1	1.1b
		Maximum in 1st quadrant.	B1	2.2a
			(4)	

(7 marks)

Notes:

(a)

M1: Attempts to calculate $\mathrm{f}(3)$. Attempted division of $\mathrm{f}(x)$ by $(x-3)$ is M0.
Either line in the main scheme is acceptable.
A1*: Correct calculation, reason and conclusion. It must follow M1. Accept, for example,
$\mathrm{f}(3)=0$ hence $(x-3)$ is a factor of $\mathrm{f}(x)$ (by the factor theorem).
$\mathrm{f}(3)=0$ hence $(x-3)$ is a factor.
(b)

B1: Deduces that $a=2$
(c)

B1: Shape (positive quartic with two minima).
B1ft: $(-2,0)$ and $(3,0)$ labelled in the correct place at the minima. Condone -2 and 3 .
Follow through on their a.
B1: $(0,36)$ labelled as the y intercept. Condone 36.
B1: Local maximum in the first quadrant is the only other turning point.

