$2 x-y+6=0$ and $y=2 x^{2}+k x+9$
Rearranges to $y=2 x+6$ and substitutes into $y=2 x^{2}+k x+9$

$$
\begin{aligned}
& 2 x+6=2 x^{2}+k x+9 \\
& 2 x^{2}+(k-2) x+3=0
\end{aligned}
$$

$2 x+6=2 x^{2}+k x+9$	M1	1.1 b
$2 x^{2}+(k-2) x+3=0$	A 1	1.1 b
Uses the discriminant $(k-2)^{2}-4(2)(3)>0$ proceeding to $k \ldots$	dM1	2.1
$k \ldots 2-2 \sqrt{6}$ or $k \ldots 2+2 \sqrt{6}$	A 1	1.1 b
$\{k: k<2-2 \sqrt{6}\} \cup\{k: k>2+2 \sqrt{6}\}$	A 1	2.5
	$(\mathbf{5})$	

$2 x+6=2 x^{2}+k x+9$	M1	1.1 b
$2 x^{2}+(k-2) x+3=0$	A 1	1.1 b
Uses the discriminant $(k-2)^{2}-4(2)(3)>0$ proceeding to $k \ldots$	dM1	2.1
$k \ldots 2-2 \sqrt{6}$ or $k \ldots 2+2 \sqrt{6}$	A 1	1.1 b
$\{k: k<2-2 \sqrt{6}\} \cup\{k: k>2+2 \sqrt{6}\}$	A 1	2.5
	$(\mathbf{5})$	

(5 marks)

Notes:

M1: For an attempt to rearrange the linear equation to make y the subject and substitute into the quadratic equation.
A1: For a correct 3TQ with like terms collected, set $=0$.
May be implied by correct use of the discriminant with $a=2, b=(k-2), c=3$.
dM1: For the key step in using the discriminant with their a, b and c which must include k, proceeding to at least one critical value for k
A1: One correct critical value. Allow any inequality/equality here. Condone $\sqrt{24}$ for $2 \sqrt{6}$
A1: $\{k: k<2-2 \sqrt{6}\} \cup\{k: k>2+2 \sqrt{6}\}$ cso. Set notation required. Condone $\sqrt{24}$ for $2 \sqrt{6}$.

Alternative

M1: For an attempt to rearrange the linear equation to make x the subject and substitute into the quadratic equation for both instances of x.
A1: For a correct 3TQ with like terms collected, i.e., $y^{2}+(k-14) y+(54-6 k)=0$.
May be implied by correct use of the discriminant with $a=1, b=(k-14), c=(54-6 k)$.
dM1A1A1: As in the main scheme.

