$4 x^{2}>20 x-27$		
$\begin{gathered} 4 x^{2}-20 x+27>0 \\ 4 x^{2}-20 x+27=4\left(x-\frac{5}{2}\right)^{2}-25+27 \quad \text { or } \quad(2 x-5)^{2}+2 \end{gathered}$	M1	3.1a
$=4\left(x-\frac{5}{2}\right)^{2}+2$ with comment (see notes)	A1	1.1b
$\text { As } 4\left(x-\frac{5}{2}\right)^{2} \geqslant 0,4\left(x-\frac{5}{2}\right)^{2}+2 \geqslant 2>0$ hence $4 x^{2}>20 x-27$ for all x	A1	2.4
	(3)	

Notes:

Method One: Completing the square

M1: For an attempt to rearrange and complete the square. Accept $4(x-2.5)^{2} \ldots$ or $(2 x-5)^{2} \ldots$
A1: For either $4(x-2.5)^{2}+2$ or $(2 x-5)^{2}+2$ with either e.g., $4(x-2.5)^{2} \geqslant 0$ or $(2 x-5)^{2}+2 \geqslant 2$ or minimum at $(2,5,2)$. Accept the inequality statement in words.
Condone e.g., $4(x-2.5)^{2}>0$ or $(x-2.5)^{2}$ is always positive for this mark.
A1: A fully written out solution, with correct statements and no incorrect statements. There must be a valid reason and conclusion.

Method Two: Discriminant

M1: For an attempt to rearrange and find the discriminant $b^{2}-4 a c$ with a correct a, b and c which may be within a quadratic formula. You may condone missing brackets.
A1: Correct value of $b^{2}-4 a c=-32$ and states that the curve is U shaped (or intercept is $(0,27)$) or equivalent such as positive x^{2} etc.
A1: Explains that as $b^{2}-4 a c$ is negative there are no roots, and since the curve is U shaped then $4 x^{2}-20 x+27>0$ hence $4 x^{2}>20 x-27$

Method Three: Differentiation

M1: For an attempt to rearrange, differentiate and find the turning point. This would require an attempt to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, setting it equal to 0 and solving to find the x value and y value.
A1: For differentiating $\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x-20=0 \Rightarrow(2.5,2)$ is the turning point.
A1: Shows that $(2.5,2)$ is the minimum using either the second derivative or stating that the curve is U shaped etc. and $4 x^{2}-20 x+27 \geqslant 2>0$ hence $4 x^{2}>20 x-27$

