Question	Scheme	Marks	AOs	
8 (a)	$(2+3x)^6$			
	64+	B1	1.1b	
	+ $\binom{6}{1}2^{5}.(3x)+\binom{6}{2}2^{4}.(3x)^{2}+\binom{6}{3}2^{3}.(3x)^{3}+$	M1	1.1b	
	Two of+576 x +2160 x^2 +4320 x^3 +	A1	1.1b	
	$64 + 576x + 2160x^2 + 4320x^3 + \dots$	A1	1.1b	
		(4)		
(b)	$(2-3x)^6$			
	$64 - 576x + 2160x^2 - 4320x^3 + \dots$	B1ft	2.2a	
		(1)		
(c)	$\left[\left(2+3x \right)^{6} + \left(2-3x \right)^{6} \right]^{2}$			
	$(64+576x+2160x^{2}(+4320x^{3})+)+(64-576x+2160x^{2}(-4320x^{3})+)$ =128+4320x ² +	M1	2.2a	
	$(128 + 4320x^2 +)^2 = 16384 + 1105920x^2$	A1	1.1b	
		(2)		
(d)	$\left[\left(2+ax\right)^n+\left(2-ax\right)^n\right]^p$			
	$\left(2^n+2^n\right)^p$	M1	2.1	
	$=(2\times 2^n)^p=2^{p(n+1)}$	A1	1.1b	
		(2)		
	(9 marks)			

Notes:

(a)

B1: For 64

M1: Attempts the binomial expansion. May be awarded on either term two and/or term three.

Scored for a correct binomial coefficient combined with a correct power of 2 and a correct power of (3x)

A1: For two out of three simplified terms correct from $\dots + 576x + 2160x^2 + 4320x^3 + \dots$

A1: For all remaining terms correct $\dots + 576x + 2160x^2 + 4320x^3 + \dots$ ignore any extra terms.

Listing is acceptable for all 4 marks.

(b)

B1ft: Deduces that the signs of the second and fourth terms should be negative.

Follow through on their terms $"64"-"576"x+"2160"x^2-"4320"x^3+...$

(c)

M1: Deduces that the second terms will cancel and adds their two answers to arrive at an expression of the form $2 \times 64'' + 2 \times 2160'' x^2 + ...$ Dependent on part (b).

A1: $16384 + 1105920x^2 + \dots$

(**d**)

M1: For the key step in realising that the term independent of x will be $(2^n + 2^n)^p$ or $(2 \times 2^n)^p$

A1: $2^{p(n+1)}$ or 2^{np+p} o.e.