Question	Scheme	Marks	AOs
8(a)	$(2+3 x)^{6}$		
	$64+\ldots$	B1	1.1b
	$\ldots+\binom{6}{1} 2^{5} \cdot(3 x)+\binom{6}{2} 2^{4} \cdot(3 x)^{2}+\binom{6}{3} 2^{3} \cdot(3 x)^{3}+\ldots$	M1	1.1b
	Two of $\ldots+576 x+2160 x^{2}+4320 x^{3}+\ldots$	A1	1.1b
	$64+576 x+2160 x^{2}+4320 x^{3}+\ldots$	A1	1.1b
		(4)	
(b)	$(2-3 x)^{6}$		
	$64-576 x+2160 x^{2}-4320 x^{3}+\ldots$	B1ft	2.2a
		(1)	
(c)	$\left[(2+3 x)^{6}+(2-3 x)^{6}\right]^{2}$		
	$\begin{aligned} & \left(64+576 x+2160 x^{2}\left(+4320 x^{3}\right)+\ldots\right)+\left(64-576 x+2160 x^{2}\left(-4320 x^{3}\right)+\ldots\right) \\ & =128+4320 x^{2}+\ldots \end{aligned}$	M1	2.2a
	$\left(128+4320 x^{2}+\ldots\right)^{2}=16384+1105920 x^{2}$	A1	1.1b
		(2)	
(d)	$\left[(2+a x)^{n}+(2-a x)^{n}\right]^{p}$		
	$\left(2^{n}+2^{n}\right)^{p}$	M1	2.1
	$=\left(2 \times 2^{n}\right)^{p}=2^{p(n+1)}$	A1	1.1b
		(2)	
(9 marks)			

Notes:

(a)

B1: For 64
M1: Attempts the binomial expansion. May be awarded on either term two and/or term three.
Scored for a correct binomial coefficient combined with a correct power of 2 and a correct power of $(3 x)$
A1: For two out of three simplified terms correct from $\ldots+576 x+2160 x^{2}+4320 x^{3}+\ldots$
A1: For all remaining terms correct $\ldots+576 x+2160 x^{2}+4320 x^{3}+\ldots$ ignore any extra terms.
Listing is acceptable for all 4 marks.
(b)

B1ft: Deduces that the signs of the second and fourth terms should be negative.
Follow through on their terms "64"-"576"x+"2160" $x^{2}-" 4320 " x^{3}+\ldots$

(c)

M1: Deduces that the second terms will cancel and adds their two answers to arrive at an expression of the form $2 \times$ " $64 "+2 \times " 2160 " x^{2}+\ldots$ Dependent on part (b).
A1: $16384+1105920 x^{2}+\ldots$
(d)

M1: For the key step in realising that the term independent of x will be $\left(2^{n}+2^{n}\right)^{p}$ or $\left(2 \times 2^{n}\right)^{p}$
A1: $2^{p(n+1)}$ or $2^{n p+p}$ o.e.

