Question	Scheme	Marks	AOs
9(a)	$5 \cos \theta=24 \tan \theta$		
	Attempts to use both $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and $\sin ^{2} \theta+\cos ^{2} \theta=1$ and arrives at a quadratic equation in $\sin \theta$	M1	3.1a
	$5 \cos \theta=24 \tan \theta \Rightarrow 5 \cos ^{2} \theta=24 \sin \theta$	B1	1.1 b
	$5\left(1-\sin ^{2} \theta\right)=24 \sin \theta \Rightarrow 5-5 \sin ^{2} \theta=24 \sin \theta$	M1	1.1 b
	Arrives at $5 \sin ^{2} \theta+24 \sin \theta-5=0$ with no errors. *	A1*	2.1
		(4)	
(b)	$(5 \sin x-1)(\sin x+5)=0 \Rightarrow \sin x=\ldots \Rightarrow x=\ldots$	M1	1.1 b
	Any one of $x=11.5^{\circ}, 168.5^{\circ}, 371.5^{\circ}, 528.5^{\circ}$	A1	1.1b
	$x=11.5^{\circ}, 168.5^{\circ}, 371.5^{\circ}, 528.5^{\circ}$ only	A1	2.2a
		(3)	
(c)	Deduces that there are 8 times as many solutions in the interval. $8 \times " 4 "=32$	B1ft	2.2a
		(1)	

Notes:

(a)

M1: An overall problem-solving mark, condoning slips, for an attempt to

- Use $\tan \theta=\frac{\sin \theta}{\cos \theta}$
- Use $\pm \sin ^{2} \theta \pm \cos ^{2} \theta= \pm 1$
- Arrive at a quadratic equation in $\sin \theta$

B1: Uses the correct identity and multiplies across to give $5 \cos \theta=24 \tan \theta \Rightarrow 5 \cos ^{2} \theta=24 \sin \theta$
M1: Uses the correct identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ to form a quadratic in $\sin \theta$
$\mathbf{A 1 *}$: Arrives at the given answer $5 \sin ^{2} \theta+24 \sin \theta-5=0$ with no errors.
(b)

M1: Attempts to solve the given quadratic in $\sin x$ using an appropriate method (it is acceptable to use a calculator to solve this) and proceeds to at least one value of x
A1: At least one correct value of x
A1: $x=11.5^{\circ}, 168.5^{\circ}, 371.5^{\circ}, 528.5^{\circ}$ only in the given interval. Ignore solutions outside the interval. Do not penalise missing degree symbols.
(c)

B1ft: $8 \times$ their number of solutions to part (b). Allow a restart - so 32 is accepted regardless of their answer in (b).

