Question	Scheme	Marks	AOs
10(a)	$H = A(x-3)^2 + 1$	M1	3.3
	$x = 0, H = 0 \Longrightarrow 0 = A(0-3)^2 + 1 \Longrightarrow A = -\frac{1}{9}$	dM1	3.1b
	$H = -\frac{1}{9}(x-3)^2 + 1$	A1	1.1b
		(3)	
(b)	${H = 0.5} \Rightarrow 0.5 = -\frac{1}{9}(x-3)^2 + 1 \Rightarrow (x-3)^2 = 4.5$	M1	3.1b
	$x = 3 \pm \frac{3}{2}\sqrt{2}$	dM1	1.1b
	$3 + \frac{3}{2}\sqrt{2} - \left(3 - \frac{3}{2}\sqrt{2}\right)$ or $2 \times \frac{3}{2}\sqrt{2}$	ddM1	1.1b
	\Rightarrow Greatest horizontal length = $3\sqrt{2}$ = awrt 4.24 m	A1	3.2a
		(4)	
(c)	 Gives a limitation of the model. Accept e.g., The model is not valid before take-off (or after landing). The take-off and landing might not be at the same height. The ground might not be horizontal. The snowboarder is modelled as a particle. The poles may not be vertical. The trajectory of the snowboarder is a perfect parabola. There is no spin accounted for. There is no wind resistance in the model. 	B1	3.5b
		(1)	
	(8 mark		

Notes:

(a)

M1: Translates the situation given into a suitable equation for the model.

e.g., uses the turning point (3,1) to write $H = A(x-3)^2 + 1$

dM1: Applies a complete strategy with appropriate constraints to find all constants in their model.

e.g., uses (0,0) or (6,0) on their model and finds $A = \dots$

A1: Finds a correct equation linking H with x, i.e., $H = -\frac{1}{9}(x-3)^2 + 1$ or equivalent.

Condone use of y in place of H for both the M1 and dM1 marks, but not for A1.

(b)

M1: Substitutes H = 0.5 into their quadratic equation and proceeds to obtain a 3TQ or a quadratic in the form $(x-a)^2 = b$; $a \neq 0, b > 0$

dM1: Correct method of solving their quadratic equation to give at least one solution.

