## Question

Marks AOs
11

| $2 \log _{6}(x+3)=2-\log _{6}(4-x)$ |  |  |
| :--- | :---: | :---: |
| Uses the power law $\quad \log _{6}(x+3)^{2}=2-\log _{6}(4-x)$ | M 1 | 1.1 b |
| Uses the addition law $\log _{6}\left((x+3)^{2}(4-x)\right)=2$ | M 1 | 1.1 b |
| Removes the log $\quad(x+3)^{2}(4-x)=36$ | M1 | 1.1 b |
| Expands to a cubic in $x-x^{3}-2 x^{2}+15 x+36=36$ | dddM1 | 3.1 a |
| Correct cubic expression $=0 \quad x^{3}+2 x^{2}-15 x=0$ | A1 | 1.1 b |
| Factorises and solves $x(x+5)(x-3)=0 \Rightarrow x=\ldots$ | M1 | 1.1 b |
|  | $x=0, x=3$ only | A1 |
|  | 2.3 |  |
|  | $(7)$ |  |

(7 marks)

## Notes:

M1: Uses the power law of $\log$ 物 $6(x+3)=\log _{6}(x+3)^{2}$
M1: Uses the addition law of logs following the above $\log _{6}(x+3)^{2}+\log _{6}(4-x)=\log _{6}\left((x+3)^{2}(4-x)\right)$ Alternatively uses the subtraction law following use of $2=\log _{6} 36$, i.e., $2-\log _{6}(4-x)=\log _{6} \frac{36}{4-x}$
M1: Removes the $\log$ or converts 2 into $\log _{6} 36$. Look for 2 going to 36 .
dddM1: For attempting to expand their three brackets to achieve a cubic in $x$
A1: For a correct cubic expression in $x$, set $=0$
M1: For the correct method of solving their cubic $=0$. May be implied by sight of two values for $x$ from this cubic, i.e., two from $x=0, x=3, x=-5$
A1: $x=0, x=3$ only.

