Question	Scheme	Marks	AOs
12(a)	$\theta=22+64 \mathrm{e}^{-\frac{3}{32} t}, t \geqslant 0$		

(10 marks)

Notes:

(a)

B1: Uses the model to state that the initial temperature is $86^{\circ} \mathrm{C}$. Units required.
(b)

M1: Attempts to differentiate $\theta=22+64 \mathrm{e}^{-\frac{3}{32} t}$ with respect to ${ }_{t}$. Look for $64 \mathrm{e}^{-\frac{3}{32} t} \rightarrow k \mathrm{e}^{-\frac{3}{32} t}$.
dM1: Substitutes $t=10$ into their $\frac{\mathrm{d} \theta}{\mathrm{d} t}$
A1: awrt $2.35 \quad(2.3496 \ldots)$

(c)

M1: Attempts to solve $22+64 \mathrm{e}^{-\frac{3}{32} t}=40$ or $22+64 \mathrm{e}^{-\frac{3}{32} t}=60$ as far as $\mathrm{e}^{-\frac{3}{32} t}=k, k>0$
A1: awrt 13.5 or 5.6
dM1: Solves both $22+64 \mathrm{e}^{-\frac{3}{32} t}=40$ and $22+64 \mathrm{e}^{-\frac{3}{32} t}=60$ with correct use of logarithms to arrive at two values for t and subtracts either way round.
A1: 7 minutes 58 seconds or 478 seconds.
(d)

B1: States that the model is inaccurate (for large values of ${ }_{t}$) and provides a valid justification. e.g., $20.8^{\circ} \mathrm{C}$ is lower than the room temperature which is not possible.

Alternatively, attempt to solve $22+64 \mathrm{e}^{-\frac{3}{32} t}=20.8$ as far as $64 \mathrm{e}^{-\frac{3}{32} t}=k, k<0$ and state no solutions.
Do not allow simply "there is an asymptote at $22^{\circ} \mathrm{C}$ " without explanation that the model will not drop lower than this.
Substituting $t=120$ and suggesting that 22 is close or not close to 20.8 is not acceptable.
(e)

B1: Decrease the $\frac{3}{32}$ or increase $-\frac{3}{32}$ (or the coefficient of t).
There is no need to mention limiting the coefficient at 0 .

