Question	Scheme	Marks	AOs
12(a)	$\theta = 22 + 64e^{-\frac{3}{32}t}, \ t \geqslant 0$		
	$t = 0 \Rightarrow \theta = 86$ °C	B1	3.4
		(1)	
(b)	Attempts to differentiate $\theta = 22 + 64e^{-\frac{3}{32}t}$ with respect to $t = \frac{d\theta}{dt} = -6e^{-\frac{3}{32}t}$	M1	3.1b
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -6\mathrm{e}^{-\frac{3}{32}(10)}$	dM1	3.4
	2.35 (°C/minute)	A1	1.1b
		(3)	
(c)	$22 + 64e^{-\frac{3}{32}t} = 40$ $e^{-\frac{3}{32}t} = \frac{9}{32}$ or $e^{-\frac{3}{32}t} = \frac{19}{32}$	M1	1.1b
	$t_1 = 13.53$ $t_2 = 5.56$	A1	1.1b
	$T = t_1 - t_2 = 13.53 - 5.56$	dM1	1.1b
	7.97 minutes = 7 minutes 58 seconds	A1	1.1b
		(4)	
(d)	20.8°C is below the lower limit 22°C and so the model is inaccurate (for large values of t).	B1	3.5a
		(1)	
(e)	Increase the coefficient of t (but keep it below 0).	B1	3.5c
		(1)	
(10 marks)			
Notes:			
(a) B1: Uses the model to state that the initial temperature is 86°C. Units required.			
(b)			
M1: Attempts to differentiate $\theta = 22 + 64e^{-\frac{3}{32}t}$ with respect to t . Look for $64e^{-\frac{3}{32}t} \rightarrow ke^{-\frac{3}{32}t}$.			
dM1: Substitutes $t = 10$ into their $\frac{d\theta}{dt}$			
A1: awrt 2.35 (2.3496)			

M1: Attempts to solve
$$22+64e^{-\frac{3}{32}t}=40$$
 or $22+64e^{-\frac{3}{32}t}=60$ as far as $e^{-\frac{3}{32}t}=k$, $k>0$
A1: awrt 13.5 or 5.6
dM1: Solves both $22+64e^{-\frac{3}{32}t}=40$ and $22+64e^{-\frac{3}{32}t}=60$ with correct use of logarithms to arrive at

(c)

(d)

two values for t and subtracts either way round. **A1:** 7 minutes 58 seconds or 478 seconds.

B1: States that the model is inaccurate (for large values of _t) and provides a valid justification. e.g., 20.8°C is lower than the room temperature which is not possible.

Alternatively, attempt to solve $22+64e^{-\frac{3}{32}t}=20.8$ as far as $64e^{-\frac{3}{32}t}=k$, k<0 and state no solutions. Do not allow simply "there is an asymptote at 22°C" without explanation that the model will not

Substituting t = 120 and suggesting that 22 is close or not close to 20.8 is not acceptable.

drop lower than this.

(e)

There is no need to mention limiting the coefficient at 0.

B1: Decrease the $\frac{3}{32}$ or increase $-\frac{3}{32}$ (or the coefficient of t).