Question

Scheme

13(a)	($V=$) $\pi r^{2} h=400$	B1	1.1b
	$A=2 \pi r^{2}+2 \pi r h$	B1	1.1b
	$h=\frac{400}{\pi r^{2}} \Rightarrow A=2 \pi r^{2}+2 \pi r\left(\frac{400}{\pi r^{2}}\right)$	M1	1.1b
	$A=2 \pi r^{2}+\frac{800}{r} *$	A1*	1.1b
		(4)	
(b)	Attempts to differentiate $A=2 \pi r^{2}+\frac{800}{r}$ with respect to r $\frac{\mathrm{d} A}{\mathrm{~d} r}=4 \pi r-800 r^{-2}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Sets $\frac{\mathrm{d} A}{\mathrm{~d} r}=0 \Rightarrow r^{3}=\frac{200}{\pi}$	dM1	1.1b
	$\Rightarrow r=\sqrt[3]{\frac{200}{\pi}}(\mathrm{~cm})$	A1	1.1b
		(4)	
(c)	Finds $\frac{\mathrm{d}^{2} A}{\mathrm{~d} r^{2}}=4 \pi+1600 r^{-3}$ at $r=\sqrt[3]{\frac{200}{\pi}}$	M1	1.1b
	$\frac{\mathrm{d}^{2} A}{\mathrm{~d} r^{2}}=(+37.7)>0$ hence minimum (surface area).	A1ft	2.4
		(2)	
(d)	Substitutes $r=\sqrt[3]{\frac{200}{\pi}}$ in $A=2 \pi r^{2}+\frac{800}{r}$	M1	1.1b
	Minimum surface area $=$ awrt $301\left(\mathrm{~cm}^{2}\right)$	A1ft	1.1b
		(2)	

(12 marks)

Notes:

(a)

B1: Correct equation for volume: $\pi r^{2} h=400$
B1: Correct formula for surface area in terms of the radius and height: $A=2 \pi r^{2}+2 \pi r h$
M1: Rearranges $\pi r^{2} h=400$ to $h=\frac{400}{\pi r^{2}}$ and substitutes in to h in their formula for the surface area A1*: cso.
(b)

M1: Attempts to differentiate $A=2 \pi r^{2}+\frac{800}{r}$ with respect to r. Look for $\left(\frac{\mathrm{d} A}{\mathrm{~d} r}=\right) \ldots r \pm \ldots r^{-2}$
A1: $\left(\frac{\mathrm{d} A}{\mathrm{~d} r}=\right) 4 \pi r-800 r^{-2}$ Condone $\frac{\mathrm{d} A}{\mathrm{~d} r}$ appearing as $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or being absent.
$\mathbf{d M 1 : ~ S e t s ~ t h e i r ~} \frac{\mathrm{d} A}{\mathrm{~d} r}=0$ and arrives at $r^{3}=k, k>0 . \frac{\mathrm{d} A}{\mathrm{~d} r}$ must have been of the form $\ldots r \pm \ldots r^{-2}$ A1: $r=\sqrt[3]{\frac{200}{\pi}}$ or exact equivalent. Condone omission of units or use of incorrect units. Note $r=3.99$ to s.f.
(c)

M1: Finds $\frac{\mathrm{d}^{2} A}{\mathrm{~d} r^{2}}$ following on from their $\frac{\mathrm{d} A}{\mathrm{~d} r}$ (which must be of equivalent difficulty) and attempts to find its value or sign at their r
A1ft: $\frac{\mathrm{d}^{2} A}{\mathrm{~d} r^{2}}=(+37.7)>0$ hence minimum (surface area).
Alternatively, $\frac{\mathrm{d}^{2} A}{\mathrm{~d} r^{2}}=4 \pi+1600 r^{-3}>0$ as $+\mathrm{ve}++\mathrm{ve}>0$ as $r>0$.
Requires a correct calculation or expression, a correct statement, and a correct conclusion.
Follow through on their $r(r>0)$ and their $\frac{\mathrm{d}^{2} A}{\mathrm{~d} r^{2}}$.
$\frac{d^{2} A}{d r^{2}}$ must be used for this mark to meet the demand of the question.
(d)

M1: For a correct method for finding $A=$ from their solution to $\frac{\mathrm{d} A}{\mathrm{~d} r}=0$
May be implied by correct final answer. Do not accept attempts using negative values of r.
A1ft: Minimum surface area $=$ awrt $301\left(\mathrm{~cm}^{2}\right)$ Condone omission of units or use of incorrect units.

