Question	Scheme	Marks	AOs
13(a)	$(V=)\pi r^2 h = 400$	B1	1.1b
	$A = 2\pi r^2 + 2\pi rh$	B1	1.1b
	$h = \frac{400}{\pi r^2} \Longrightarrow A = 2\pi r^2 + 2\pi r \left(\frac{400}{\pi r^2}\right)$	M1	1.1b
	$A = 2\pi r^2 + \frac{800}{r} *$	A1*	1.1b
		(4)	
(b)	Attempts to differentiate $A = 2\pi r^2 + \frac{800}{r}$ with respect to r $\frac{dA}{dr} = 4\pi r - 800r^{-2}$	M1 A1	3.1b 1.1b
	Sets $\frac{dA}{dr} = 0 \Longrightarrow r^3 = \frac{200}{\pi}$	dM1	1.1b
	$\Rightarrow r = \sqrt[3]{\frac{200}{\pi}}$ (cm)	A1	1.1b
		(4)	
(c)	Finds $\frac{d^2 A}{dr^2} = 4\pi + 1600r^{-3}$ at $r = \sqrt[3]{\frac{200}{\pi}}$	M1	1.1b
	$\frac{d^2 A}{dr^2} = (+37.7) > 0$ hence minimum (surface area).	A1ft	2.4
		(2)	
(d)	Substitutes $r = \sqrt[3]{\frac{200}{\pi}}$ in $A = 2\pi r^2 + \frac{800}{r}$	M1	1.1b
	Minimum surface area = awrt 301 (cm^2)	A1ft	1.1b
		(2)	
		(12 marks)	
Notes:			
(a) B1: Correct equation for volume: $\pi r^2 h = 400$ B1: Correct formula for surface area in terms of the radius and height: $A = 2\pi r^2 + 2\pi rh$			
M1: Rearranges $\pi r^2 h = 400$ to $h = \frac{400}{\pi r^2}$ and substitutes in to h in their formula for the surface area			

A1*: cso.

(b)
M1: Attempts to differentiate
$$A = 2\pi r^2 + \frac{800}{r}$$
 with respect to r . Look for $\left(\frac{dA}{dr}\right) = 0 \dots r \pm \dots r^{-2}$
A1: $\left(\frac{dA}{dr}\right) = 4\pi r - 800r^{-2}$ Condone $\frac{dA}{dr}$ appearing as $\frac{dy}{dx}$ or being absent.
dM1: Sets their $\frac{dA}{dr} = 0$ and arrives at $r^3 = k, k > 0$. $\frac{dA}{dr}$ must have been of the form $\dots r \pm \dots r^{-2}$
A1: $r = \sqrt[3]{\frac{200}{\pi}}$ or exact equivalent. Condone omission of units or use of incorrect units. Note $r = 3.99$
to s.f.
(c)
M1: Finds $\frac{d^2A}{dr^2}$ following on from their $\frac{dA}{dr}$ (which must be of equivalent difficulty) and attempts to
find its value or sign at their r
A1ft: $\frac{d^2A}{dr^2} = (+37.7) > 0$ hence minimum (surface area).
A1ternatively, $\frac{d^2A}{dr^2} = 4\pi + 1600r^{-3} > 0$ as $+ve + +ve > 0$ as $r > 0$.
Requires a correct calculation or expression, a correct statement, and a correct conclusion.
Follow through on their r ($r > 0$) and their $\frac{d^2A}{dr^2}$.
 $\frac{d^2A}{dr^2}$ must be used for this mark to meet the demand of the question.
(d)
M1: For a correct method for finding $A =$ from their solution to $\frac{dA}{dr} = 0$
May be implied by correct final answer. Do not accept attempts using negative values of r .

Alft: Minimum surface area = awrt 301 (cm²) Condone omission of units or use of incorrect units.