Question	Scheme	Marks	AOs
14(a)	Attempts to find $\|\overrightarrow{O A}\|$ and uses the cosine rule in an attempt to find $\|\overrightarrow{A B}\|$.	M1	3.1a
	$\|\overrightarrow{O A}\|=\sqrt{3^{2}+4^{2}}=5$	B1	1.2
	$\|\overrightarrow{A B}\|^{2}=5^{2}+10^{2}-2(5)(10) \cos 60^{\circ} \Rightarrow\|\overrightarrow{A B}\|=\ldots$	M1	1.1b
	$\|\overrightarrow{A B}\|=5 \sqrt{3}$ *	A1*	1.1b
		(4)	
(b)	$(5 \sqrt{3})^{2}=(4 \sqrt{3})^{2}+p^{2}$	M1	1.1b
	$p=3 \sqrt{3}$	A1	1.1b
	$\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=3 \mathbf{i}-4 \mathbf{j}+(-4 \sqrt{3}) \mathbf{i}+(-3 \sqrt{3}) \mathbf{j}$	dM1	2.1
	$\overrightarrow{O B}=(3-4 \sqrt{3}) \mathbf{i}+(-4-3 \sqrt{3}) \mathbf{j}$	A1	2.5
		(4)	

Notes:

(a)

M1: An overall problem-solving mark, condoning slips, for using the given information in an attempt to

- find $|\overrightarrow{O A}|$
- use the cosine rule to find $|\overrightarrow{A B}|$

B1: $|\overrightarrow{O A}|=5$ seen.
M1: Attempts to use the cosine rule to find $|\overrightarrow{A B}|$.
A1*: Complete solution showing all steps. There is no need to see any working for $|\overrightarrow{O A}|=5$ but it should be stated or seen on a diagram as a minimum.
(b)

M1: Attempts to find p using Pythagoras' Theorem with $|\overrightarrow{A B}|=5 \sqrt{3}$
A1: $p=3 \sqrt{3}$ or $\sqrt{27}$ or awrt 5.2
$\mathbf{d M 1}$: Attempts to use $\overrightarrow{O B}=\overrightarrow{O A}-\overrightarrow{B A}$ with their p.
Condone slips but there must be a clear attempt to subtract the two vectors the correct way round.
A1: $\overrightarrow{O B}=(3-4 \sqrt{3}) \mathbf{i}+(-4-3 \sqrt{3}) \mathbf{j}$ only.

(b) Alternative

M1: Attempts to find p using Pythagoras' Theorem with $|\overrightarrow{O B}|=10$
For reference: $(3-4 \sqrt{3})^{2}+(-4-p)^{2}=100 ; p^{2}+8 p-27-24 \sqrt{3}=0$

$$
\text { A1: } p=3 \sqrt{3} \text { or } \sqrt{27} \text { or awrt } 5.2
$$

$\mathbf{d M 1 : ~ A t t e m p t s ~ t o ~ u s e ~} \overrightarrow{O B}=\overrightarrow{O A}-\overrightarrow{B A}$ with their p.
Condone slips but there must be a clear attempt to subtract the two vectors the correct way round.
A1: $\overrightarrow{O B}=(3-4 \sqrt{3}) \mathbf{i}+(-4-3 \sqrt{3}) \mathbf{j}$ only.

