14(a)Attempts to find $ \overline{OA} $ and uses the cosine rule in an attempt to find $ \overline{AB} $.M1 $ \overline{OA} = \sqrt{3^2 + 4^2} = 5$ B1 $ \overline{AB} ^2 = 5^2 + 10^2 - 2(5)(10)\cos 60^\circ \Rightarrow \overline{AB} =$ M1 $ \overline{AB} = 5\sqrt{3}$ A1*(4)(4)(b) $(5\sqrt{3})^2 = (4\sqrt{3})^2 + p^2$ M1 $p = 3\sqrt{3}$ A1 $\overline{OB} = \overline{OA} + \overline{AB} = 3i - 4j + (-4\sqrt{3})i + (-3\sqrt{3})j$ dM1	AOs
$ \overrightarrow{AB} ^{2} = 5^{2} + 10^{2} - 2(5)(10)\cos 60^{\circ} \Rightarrow \overrightarrow{AB} = \dots \qquad M1$ $ \overrightarrow{AB} = 5\sqrt{3} * \qquad A1^{*}$ (4) $(b) \qquad (5\sqrt{3})^{2} = (4\sqrt{3})^{2} + p^{2} \qquad M1$ $p = 3\sqrt{3} \qquad A1$ $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = 3\mathbf{i} - 4\mathbf{j} + (-4\sqrt{3})\mathbf{i} + (-3\sqrt{3})\mathbf{j} \qquad M1$	3.1a
(b) $ \frac{ \overrightarrow{AB} = 5\sqrt{3} *}{(4)} $ $ \frac{(4)}{(5\sqrt{3})^2 = (4\sqrt{3})^2 + p^2} \qquad M1 $ $ \frac{p = 3\sqrt{3}}{\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = 3\mathbf{i} - 4\mathbf{j} + (-4\sqrt{3})\mathbf{i} + (-3\sqrt{3})\mathbf{j} \qquad M1 $	1.2
(b) $ \frac{(5\sqrt{3})^2 = (4\sqrt{3})^2 + p^2}{p = 3\sqrt{3}} $ M1 $ \frac{p = 3\sqrt{3}}{\overline{OB} = \overline{OA} + \overline{AB} = 3\mathbf{i} - 4\mathbf{j} + (-4\sqrt{3})\mathbf{i} + (-3\sqrt{3})\mathbf{j}} $ M1	1.1b
(b) $ \begin{pmatrix} (5\sqrt{3})^2 = (4\sqrt{3})^2 + p^2 \\ p = 3\sqrt{3} \\ \hline \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = 3\mathbf{i} - 4\mathbf{j} + (-4\sqrt{3})\mathbf{i} + (-3\sqrt{3})\mathbf{j} \\ \hline \mathbf{M1} $	1.1b
$p = 3\sqrt{3}$ $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = 3\mathbf{i} - 4\mathbf{j} + (-4\sqrt{3})\mathbf{i} + (-3\sqrt{3})\mathbf{j}$ $dM1$	
$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = 3\mathbf{i} - 4\mathbf{j} + (-4\sqrt{3})\mathbf{i} + (-3\sqrt{3})\mathbf{j} \qquad \text{dM1}$	1.1b
	1.1b
$\overline{}$	2.1
$\overrightarrow{OB} = (3 - 4\sqrt{3})\mathbf{i} + (-4 - 3\sqrt{3})\mathbf{j} $ A1	2.5
(4)	
(1	marks)

Notes:

(a)

M1: An overall problem-solving mark, condoning slips, for using the given information in an attempt to

- find $|\overrightarrow{OA}|$
- use the cosine rule to find $|\overrightarrow{AB}|$

B1: $\left| \overrightarrow{OA} \right| = 5$ seen.

M1: Attempts to use the cosine rule to find $\left| \overrightarrow{AB} \right|$.

A1*: Complete solution showing all steps. There is no need to see any working for $|\overrightarrow{OA}| = 5$ but it

should be stated or seen on a diagram as a minimum.

(b)

M1: Attempts to find *p* using Pythagoras' Theorem with $\left| \overrightarrow{AB} \right| = 5\sqrt{3}$

A1:
$$p = 3\sqrt{3}$$
 or $\sqrt{27}$ or awrt 5.2

dM1: Attempts to use $\overrightarrow{OB} = \overrightarrow{OA} - \overrightarrow{BA}$ with their *p*.

Condone slips but there must be a clear attempt to subtract the two vectors the correct way round.

A1: $\overrightarrow{OB} = (3 - 4\sqrt{3})\mathbf{i} + (-4 - 3\sqrt{3})\mathbf{j}$ only.

(b) Alternative

M1: Attempts to find *p* using Pythagoras' Theorem with $\left|\overrightarrow{OB}\right| = 10$

For reference: $(3-4\sqrt{3})^2 + (-4-p)^2 = 100$; $p^2 + 8p - 27 - 24\sqrt{3} = 0$

A1: $p = 3\sqrt{3}$ or $\sqrt{27}$ or awrt 5.2

dM1: Attempts to use $\overrightarrow{OB} = \overrightarrow{OA} - \overrightarrow{BA}$ with their *p*.

Condone slips but there must be a clear attempt to subtract the two vectors the correct way round.

A1:
$$\overrightarrow{OB} = (3 - 4\sqrt{3})\mathbf{i} + (-4 - 3\sqrt{3})\mathbf{j}$$
 only.