Question	Scheme	Marks	AOs
1 (a)	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x}\right\} 2x^2 - 7x - 4$	M1 A1	1.1b 1.1b
		(2)	
(b)	Attempts to solve $\left\{\frac{dy}{dx}=\right\}2x^2-7x-4\dots 0$ e.g., $(2x+1)(x-4)=0$ leading to $x=\dots$ and $x=\dots$	M1	1.1b
	Correct critical values $x = -\frac{1}{2}, 4$	A1	1.1b
	Chooses inside region for their critical values	dM1	1.1b
	Accept either $-\frac{1}{2} < x < 4$ or $-\frac{1}{2}, x, 4$	A1	1.1b
		(4)	
(6 marks)			

Notes:

- **(a)**
- M1: Decreases the power of x by one for at least one of their terms. Look for $x^n \to \dots x^{n-1}$ Allow for $5 \to 0$

$$\mathbf{A1:} \quad \left\{\frac{\mathrm{d}y}{\mathrm{d}x}\right\} 2x^2 - 7x - 4$$

- **(b)**
- M1: Sets their dy/dx...0 where ... may be an equality or an inequality and proceeds to find two values for x from a 3TQ using the usual rules. This may be implied by their critical values.
 A1: Correct critical values x...-1/2,4

These may come directly from a calculator and might only be seen on a sketch.

dM1: Chooses the inside region for their critical values.

A1: Accept either
$$-\frac{1}{2} < x < 4$$
 or $-\frac{1}{2}$, x , 4 but not, e.g., $-\frac{1}{2} < x$, 4
Condone, e.g., $x > -\frac{1}{2}$, $x < 4$ or $x > -\frac{1}{2}$ and $x < 4$ or $\left\{x : x > -\frac{1}{2}\right\} \cap \left\{x : x < 4\right\}$
or $x \in \left(-\frac{1}{2}, 4\right)$ or $x \in \left[-\frac{1}{2}, 4\right]$
Note: You may see $x < -\frac{1}{2}, x < 4$ in their initial work before $-\frac{1}{2} < x < 4$. Condone this so long as
it is clear that the $-\frac{1}{2} < x < 4$ is their final answer.