$\text { Let } \begin{aligned} u=\sqrt{x} \quad 6 x+7 \sqrt{x}-20=0 & \Rightarrow 6 u^{2}+7 u-20=0 \\ & \Rightarrow(3 u-4)(2 u+5)\{=0\} \end{aligned}$	M1A1	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
Attempts $\sqrt{x}={ }^{\prime} \frac{4}{3}{ }^{\prime},{ }^{\prime \prime}-\frac{5}{2} \prime \prime \Rightarrow x=\ldots$	M1	1.1b
$x=\frac{16}{9}$ only	A1 cso	2.3
	(4)	

(4 marks)

Alt 1	$\begin{gathered} 6 x+7 \sqrt{x}-20=0 \Rightarrow 7 \sqrt{x}=20-6 x \Rightarrow 49 x=(20-6 x)^{2} \\ \Rightarrow 49 x=400-240 x+36 x^{2} \end{gathered}$	M1	1.1b
	$36 x^{2}-289 x+400\{=0\}$	A1	1.1b
	$(9 x-16)(4 x-25)=0$	M1	1.1b
	$x=\frac{16}{9}$ only	A1 cso	2.3
		(4)	
Alt 2	$6 x+7 \sqrt{x}-20=0 \Rightarrow(3 \sqrt{x}-4)(2 \sqrt{x}+5)=0$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Attempts $\sqrt{x}={ }^{\prime} \frac{4}{3}{ }^{\prime},{ }^{\prime \prime}-\frac{5}{2}{ }^{\prime \prime} \Rightarrow x=\ldots$	M1	1.1b
	$x=\frac{16}{9}$ only	A1 cso	2.3
		(4)	

Notes:

M1: Attempts a valid method that enables the problem to be solved. See General Principles for Pure Mathematics Marking at the front of the mark scheme for guidance. Score for either letting $u=\sqrt{x}$ and attempting to factorise to $(a u \pm c)(b u \pm d)$ with $a b=6, c d=20$
or making $7 \sqrt{x}$ the subject and attempting to square both sides.
or attempting to factorise to $(a \sqrt{x} \pm c)(b \sqrt{x} \pm d)$ with $a b=6, c d=20$
or by quadratic formula or completing the square following usual rules.

A1: $\quad(3 u-4)(2 u+5)\{=0\}$ or $36 x^{2}-289 x+400\{=0\}$ or $(3 \sqrt{x}-4)(2 \sqrt{x}+5)\{=0\}$
If they use the formula, it must be correct e.g., $u\{\operatorname{or} \sqrt{x}\}=\frac{-7 \pm \sqrt{7^{2}-4(6)(-20)}}{12}$ followed by $u\{$ or $\sqrt{x}\}=\frac{4}{3}$ or equivalent e.g., $\frac{16}{12}$. Ignore if they have $u\{\operatorname{or} \sqrt{x}\}=-\frac{5}{2}$ or not.

If they complete the square, they must have $\left(u+\frac{7}{12}\right)^{2}=\frac{529}{144}$ followed by $u\{\operatorname{or} \sqrt{x}\}=\frac{4}{3}$ or equivalent e.g., $\frac{16}{12}$. Ignore if they have $u\{\operatorname{or} \sqrt{x}\}=-\frac{5}{2}$ or not.
M1: Correct method from $p \sqrt{x} \pm q=0$ leading to $x=\ldots$ by squaring
In Alt 1 , it is for solving their quadratic using the General Principles for Pure Mathematics Marking. There must be a method shown, i.e., the solutions should not come straight from a calculator. If attempting to factorise, it must be to $(a x \pm c)(b x \pm d)$ with $a b=36, c d=400$ In Alt 2 , it is for squaring their value(s) for u to get $x=\ldots$
A1: cso $x=\frac{16}{9}$ only. $x=\frac{25}{4}$ must be discarded. Note 0011 is not possible.
Allow "incorrect" $x=-\frac{16}{9}$ or $x=-\frac{25}{4}$ to be seen as long as they are discarded.
Ignore any reason they give for rejecting solutions.
Note that a method to solve their quadratic must be seen - solutions must not come directly from a calculator. Simply stating the quadratic formula (without substitution) is insufficient.

