Question	Scheme	Marks	AOs
2	Let $u = \sqrt{x}$ $6x + 7\sqrt{x} - 20 = 0 \Longrightarrow 6u^2 + 7u - 20 = 0$ $\Rightarrow (3u - 4)(2u + 5) \{= 0\}$	M1A1	1.1b 1.1b
	Attempts $\sqrt{x} = "\frac{4}{3}", "-\frac{5}{2}" \Longrightarrow x =$	M1	1.1b
	$x = \frac{16}{9}$ only	A1 cso	2.3
		(4)	
(4 marks)			
Alt 1	$6x + 7\sqrt{x} - 20 = 0 \Longrightarrow 7\sqrt{x} = 20 - 6x \Longrightarrow 49x = (20 - 6x)^2$		
	$\Rightarrow 49x = 400 - 240x + 36x^2$	M1	1.1b
	$36x^2 - 289x + 400 \{=0\}$	A1	1.1b
	(9x - 16)(4x - 25) = 0	M1	1.1b
	$x = \frac{16}{9}$ only	A1 cso	2.3
		(4)	
Alt 2	$6x + 7\sqrt{x} - 20 = 0 \Longrightarrow \left(3\sqrt{x} - 4\right)\left(2\sqrt{x} + 5\right) = 0$	M1 A1	1.1b 1.1b
	Attempts $\sqrt{x} = "\frac{4}{3}", "-\frac{5}{2}" \Longrightarrow x =$	M1	1.1b
	$x = \frac{16}{9}$ only	A1 cso	2.3
		(4)	

Notes:

M1: Attempts a valid method that enables the problem to be solved. See General Principles for Pure Mathematics Marking at the front of the mark scheme for guidance. Score for either letting $u = \sqrt{x}$ and attempting to factorise to $(au \pm c)(bu \pm d)$ with ab = 6, cd = 20

or making $7\sqrt{x}$ the subject and attempting to square both sides.

or attempting to factorise to $(a\sqrt{x}\pm c)(b\sqrt{x}\pm d)$ with ab = 6, cd = 20

or by quadratic formula or completing the square following usual rules.

A1:
$$(3u-4)(2u+5) = 0$$
 or $36x^2 - 289x + 400 = 0$ or $(3\sqrt{x}-4)(2\sqrt{x}+5) = 0$

If they use the formula, it must be correct e.g., $u\left\{\operatorname{or}\sqrt{x}\right\} = \frac{-7 \pm \sqrt{7^2 - 4(6)(-20)}}{12}$ followed by $u\left\{\operatorname{or}\sqrt{x}\right\} = \frac{4}{3}$ or equivalent e.g., $\frac{16}{12}$. Ignore if they have $u\left\{\operatorname{or}\sqrt{x}\right\} = -\frac{5}{2}$ or not.

If they complete the square, they must have $\left(u + \frac{7}{12}\right)^2 = \frac{529}{144}$ followed by $u\left\{\operatorname{or}\sqrt{x}\right\} = \frac{4}{3}$ or equivalent e.g., $\frac{16}{12}$. Ignore if they have $u\left\{ \operatorname{or} \sqrt{x} \right\} = -\frac{5}{2}$ or not. Correct method from $p\sqrt{x} \pm q = 0$ leading to $x = \dots$ by squaring **M1**: In Alt 1, it is for solving their quadratic using the General Principles for Pure Mathematics Marking. There must be a method shown, i.e., the solutions should not come straight from a calculator. If attempting to factorise, it must be to $(ax\pm c)(bx\pm d)$ with ab = 36, cd = 400In Alt 2, it is for squaring their value(s) for u to get $x = \dots$ cso $x = \frac{16}{9}$ only. $x = \frac{25}{4}$ must be discarded. Note 0011 is not possible. A1:

Allow "incorrect" $x = -\frac{16}{9}$ or $x = -\frac{25}{4}$ to be seen as long as they are discarded.

Ignore any reason they give for rejecting solutions.

Note that a method to solve their quadratic must be seen – solutions must not come directly from a calculator. Simply stating the quadratic formula (without substitution) is insufficient.