States or uses the upper limit is $\sqrt{5}$	B1	1.1 b
$\int 4 x^{2}+3 \mathrm{~d} x=\frac{4}{3} x^{3}+3 x$	M1	1.1 b A1 1.1 b
Full method of finding the area of R e.g. e.g. 23 $\sqrt{5}-\left[\frac{4}{3} x^{3}+3 x\right]_{0}^{\sqrt{5}}=\ldots$	M1	2.1
$\left[20 x-\frac{4}{3} x^{3}\right]_{0}^{\sqrt{5}}=\ldots$	A1	1.1 b
\Rightarrow Area $R=\frac{40}{3} \sqrt{5}$	(5)	

Notes:

B1: States or uses the upper limit $\sqrt{5}$ Score when seen as the solution $x=\sqrt{5}$
M1: Attempts to integrate $4 x^{2}+3$ or $\pm\left(23-\left(4 x^{2}+3\right)\right)$ which may be simplified.
Look for one term from $4 x^{2}+3$ with $x^{n} \rightarrow x^{n+1}$ It is not sufficient just to integrate 23.
A1: Correct integration. Ignore any $+c$ or spurious integral signs. Indices must be processed.
Look for $\int 4 x^{2}+3\{\mathrm{~d} x\}=\frac{4}{3} x^{3}+3 x$ or $\pm \int 20-4 x^{2}\{\mathrm{~d} x\}= \pm\left(20 x-\frac{4}{3} x^{3}\right)$ if (line -curve) or (curve - line) used.
M1: Full and complete method to find the area of R including the substitution of their upper limit.
The upper limit must come from an attempt to solve $4 x^{2}+3=23$
The lower limit might not be seen but if seen it should be 0 .
See scheme for two possible ways. Condone a sign slip if (line -curve) or (curve - line) used.
A1: $\quad \frac{40}{3} \sqrt{5}$ following correct algebraic integration.
If using (curve - line) then allow recovery but they must make the $-\frac{40}{3} \sqrt{5}$ positive.

Alternative using $\int x \mathrm{~d} y$

B1: States or uses limits 3 and 23. It must be for a clear attempt to integrate with respect to y
M1: Attempts to rearrange to $x=$ and integrate $\sqrt{\frac{y-3}{4}}$ condoning slips on the rearrangement.
Look for $\ldots(y \pm 3)^{\frac{1}{2}} \rightarrow \ldots(y \pm 3)^{\frac{3}{2}}$
A1: Correct integration $\int \frac{(y-3)^{\frac{1}{2}}}{2}\{\mathrm{~d} y\}=\frac{1}{3}(y-3)^{\frac{3}{2}}$ Ignore any $+c$ or spurious integral signs.

M1: Full and complete method to find the area of R including the substitution of their limits. In this case it would be for substituting 23 and 3 and subtracting either way round into their changed expression in terms of y
A1: $\frac{40}{3} \sqrt{5}$ following correct algebraic integration.

