6 (a)	$x^{2}+y^{2}-6 x+10 y+k=0$		
	$(x-3)^{2}+(y+5)^{2} \pm \ldots=\ldots$	M1	1.1b
	Centre $(3,-5)$	A1	1.1b
		(2)	
(b)	Deduces that $k=9$ is a critical point	B1ft	2.2a
	$\begin{aligned} & \text { Recognises that radius > } 0 \\ & \qquad 49 "+25 "-k>0 \end{aligned}$	M1	3.1a
	$9<k<34$	A1	1.1b
		(3)	

Notes:

(a)

M1: For sight of $(x \pm 3)^{2} \pm(y \pm 5)^{2} \pm \ldots=\ldots$ or one coordinate for centre from $(\pm 3, \pm 5)$
A1: \quad Centre $(3,-5)$
(b)

B1ft: Deduces that $k \ldots 9$ is a critical point. Allow this to come from their $\left({ }^{(5 ")}\right)^{2}$ Condone $\frac{36}{4}$ Note that this might come from setting $y=0$ and using the discriminant on $x^{2}-6 x+k=0$
M1: $\quad(x \pm 3)^{2}+(y \pm 5)^{2}=(" 3 ")^{2}+(" 5 ")^{2}-k$ and recognises that the radius ${ }^{2}$ must be positive so $(" 3 ")^{2}+(" 5 ")^{2}-k>0$ but condone $(" 3 ")^{2}+(" 5 ")^{2}-k \ldots 0$
$k<34$ or $k,, 34$ would imply this method mark.
Note: they may have incorrectly calculated ("3") $)^{2}+\left({ }^{\prime 5} 5^{2}\right)^{2}$ in (a) so allow their value for this in place of $(" 3 ")^{2}+(" 5)^{2}$ as long as the intention is clear.
A1: $9<k<34$ but condone $9<k, 34$. Allow inequalities to be separate, i.e., $k>9, k<34$
Set notation may be seen $\{k: k>9\} \cap\{k: k<34\}$ or $k \in(9,34)$
Condone $\{k: k>9\} \cap\{k: k, 34\}$ or $k \in(9,34]$ or $k>9$ and $k, 34$
Must not be combined incorrectly, e.g., $\{k: k>9\} \cup\{k: k<34\}$

