Complete method to find the RHS of an equation for l
e.g., Attempts gradient $=\frac{80-60}{10}\{=2\}$ and uses intercept $=60$

Deduces the RHS of the equation for C is $\{y=\} a x(x-6)$
M1 \quad 3.1a
and attempts to use $(10,80)$ to find the value of a
Equation of C is $\{y=\} 2 x(x-6)$

Notes:

M1: Complete attempt to use the given information to find an equation or inequality for l, which may be $l=$ or have no LHS. $y-80=2(x-10)$ is acceptable for this mark.
A1: $\quad\{y=\} 2 x+60$ This is not scored by $y-80=2(x-10)$
M1: Deduces the RHS of the equation of C is $\{y=\} a x(x-6), a \neq 1$, and attempts to use $(10,80)$ to find the value of a which may be implied. Again, there may be no LHS.
Other possible and more lengthy alternatives include:

1) Setting the RHS to be $\{y=\} a(x-3)^{2}+b$ and using $(0,0)$ and $(10,80)$ to find a and b
2) Setting the RHS to be $\{y=\} p x^{2}+q x$ and using $(6,0)$ and $(10,80)$ to find p and q

A1: $\quad\{y=\} 2 x(x-6)$ or alternative such as $\{y=\} 2(x-3)^{2}-18$ or $\{y=\} 2 x^{2}-12 x$
This may be implied by an inequality $y \ldots 2 x(x-6)$ and may be seen as, e.g., $C=2 x(x-6)$
B1ft: " $2 x(x-6)$ ", $y, " 2 x+60$ " o.e. must follow from their l and C and apply isw
Follow through only on a quadratic for C and a straight line for l
Do not allow a mixture of inequalities, i.e., < with ",
Allow $2 x^{2}-12 x<y<2 x+60$ or as separate inequalities $y>2 x(x-6), y<2 x+60$
Do not allow $2 x(x-6)<R<2 x+60$ or $2 x(x-6)<\mathrm{f}(x)<2 x+60$ or $2 x(x-6)<2 x+60$ Ignore any reference to $-3<x<10$
Note: $y=2 x+60$ and $y=2 x(x-6)$ incorrectly expanded to $y=2 x^{2}-12$ followed by $2 x^{2}-12, y, 2 x+60$ would score 11110

