12(a)	States or uses $\tan x=\frac{\sin x}{\cos x}$	B1	1.2
	$4 \sin x=5 \cos ^{2} x \Rightarrow 4 \sin x=5\left(1-\sin ^{2} x\right)$	M1	1.1b
	$5 \sin ^{2} x+4 \sin x-5=0$ *	A1*	2.1
		(3)	
(b)	Attempts to solve $5 \sin ^{2} x+4 \sin x-5=0 \Rightarrow \sin x=\ldots$	M1	1.1b
	$\sin x=\frac{-2 \pm \sqrt{29}}{5} \quad(\sin x=\operatorname{awrt} 0.677)$	A1	1.1b
	Takes $\sin ^{-1}$ leading to at least one answer in the range	dM1	1.1b
	$x=\operatorname{awrt} 42.6\left\{^{\circ}\right\}$ and $x=\operatorname{awrt} 137.4\left\{^{\circ}\right\}$ only	A1	1.1b
		(4)	
(c)	15×22 " $=30$ following through on their "2"	B1ft	2.2a
	Explains either "mathematically" by stating $3 \times 5 \times$ their number in range 0 to 360° or 'in words" e.g., stating $3 \times 22^{\prime \prime}$ values every 360° and 5 lots of 360°	B1ft	2.4
		(2)	

Notes:

(a) Allow use of e.g. θ but the final mark requires the equation to be in terms of \boldsymbol{x}

B1: States or uses $\tan x=\frac{\sin x}{\cos x}$ e.g., $4 \tan x=5 \cos x \Rightarrow 4 \frac{\sin x}{\cos x}=5 \cos x$ Allow e.g. $\tan x=\frac{\sin \theta}{\cos \theta}$
M1: Multiplies by $\cos x$ and uses $\cos ^{2} x=1-\sin ^{2} x$ to set up a quadratic equation in just $\sin x$ Condone mixed arguments here.
A1*: Proceeds to $5 \sin ^{2} x+4 \sin x-5=0$ with correct notation and algebra, showing all key steps. The $=0$ must be present in the final answer line.
Condone a single slip in notation, e.g., $\sin x^{2}$ or $\sin \theta$ seen once.
(b)

M1: Attempts to solve $5 \sin ^{2} x+4 \sin x-5=0 \Rightarrow \sin x=\ldots$ using the usual rules. $\sin x=$ may be implied later.
Allow solution(s) from a calculator but one must be correct (0.6 or 0.7 or -1.4 or -1.5)
A1: Achieves $\sin x=\frac{-4 \pm \sqrt{116}}{10} \quad(\sin x=$ awrt 0.677$) \quad \sin x=$ may be implied later.
dM1: Finds one value of x in the range 0 to 360° from their $\sin x=$
May be scored for working in radians. If using $\sin x=0.677$ they should have awrt 0.744 or awrt 2.40
If they have made a slip in solving the quadratic, e.g., by the formula, then their values will need checking both in degrees and radians to see if this mark can be implied.
A1: $\quad x=\operatorname{awrt} 42.6\left\{^{\circ}\right\}$ and $x=\operatorname{awrt} 137.4\left\{^{\circ}\right\}$ only. Ignore any values outside of 0 to 360°
isw if they round their values to e.g., 3 sf after stating acceptable answers.
There must be some evidence that the quadratic has been solved.
(c)

B1ft: Follow through on 15 multiplied by the number of solutions in (b) in the range 0 to 360° If working in radians in (b), they must state 30 (solutions).
B1ft: Explains either mathematically or in words. See scheme.
Note that you might see arguments expanding the range from 1800 to 5400 to account for the stretch parallel to the x axis. $\frac{5400}{360}=15$ and $15 \times 2=30$ which is also acceptable.
Note: If candidates list 30 values and conclude that there are 30 solutions, score B1ftB1ft There is no need to check their 30 values are correct, but there must be 30 .

