Quest	tion	Scheme	Marks	AOs	
12(a	a)	States or uses $\tan x = \frac{\sin x}{\cos x}$	B1	1.2	
		$4\sin x = 5\cos^2 x \Longrightarrow 4\sin x = 5\left(1-\sin^2 x\right)$	M1	1.1b	
		$5\sin^2 x + 4\sin x - 5 = 0*$	A1*	2.1	
			(3)		
(1	b)	Attempts to solve $5\sin^2 x + 4\sin x - 5 = 0 \Rightarrow \sin x =$	M1	1.1b	
		$\sin x = \frac{-2 \pm \sqrt{29}}{5}$ (sin x = awrt 0.677)	A1	1.1b	
		Takes \sin^{-1} leading to at least one answer in the range	dM1	1.1b	
		$x = awrt 42.6{\circ} and x = awrt 137.4{\circ} only$	A1	1.1b	
			(4)		
(c)		$15 \times "2" = 30$ following through on their "2"	B1ft	2.2a	
		Explains either "mathematically" by stating 3×5× their number in range 0 to 360° or 'in words" e.g., stating 3 ×"2" values every 360° and 5 lots of 360°	B1ft	2.4	
			(2)		
			(9 marks)		
Notes:					
(a)	Allow use of e.g. θ but the final mark requires the equation to be in terms of x				
B1:	States or uses $\tan x = \frac{\sin x}{\cos x}$ e.g., $4\tan x = 5\cos x \Rightarrow 4\frac{\sin x}{\cos x} = 5\cos x$ Allow e.g. $\tan x = \frac{\sin \theta}{\cos \theta}$				
M1:	11: Multiplies by $\cos x$ and uses $\cos^2 x = 1 - \sin^2 x$ to set up a quadratic equation in just				
A1*:		condone mixed arguments here. roceeds to $5\sin^2 x + 4\sin x - 5 = 0$ with correct notation and algebra, showing all key steps.			
		he = 0 must be present in the final answer line.			
	Con	Condone a single slip in notation, e.g., $\sin x^2$ or $\sin \theta$ seen once.			
(b) M1:	Attempts to solve $5\sin^2 x + 4\sin x - 5 = 0 \Rightarrow \sin x =$ using the usual rules. sin $x = \max$ be implied later. Allow solution(s) from a calculator but one must be correct (0.6 or 0.7 or -1.4 or -1.5)				
A1:	Achieves $\sin x = \frac{-4 \pm \sqrt{116}}{10} (\sin x = \text{awrt } 0.677) \sin x = \text{may be implied later.}$				
dM1:	Finds one value of x in the range 0 to 360° from their sin $x =$ May be scored for working in radians. If using sin $x = 0.677$ they should have awrt 0.744 or awrt 2.40 If they have made a slip in solving the quadratic, e.g., by the formula, then their values will need checking both in degrees and radians to see if this mark can be implied. x = awrt 42.6 (°) and $x = awrt 127.4$ (°) and $x = awrt 127.4$ (°)				

A1: $x = awrt 42.6\{\circ\}$ and $x = awrt 137.4\{\circ\}$ only. Ignore any values outside of 0 to 360°

isw if they round their values to e.g., 3sf after stating acceptable answers. There must be some evidence that the quadratic has been solved.

- (c)
- **B1ft:** Follow through on 15 multiplied by the number of solutions in (b) in the range 0 to 360° If working in radians in (b), they must state 30 (solutions).
- **B1ft:** Explains either mathematically or in words. See scheme. Note that you might see arguments expanding the range from 1800 to 5400 to account for the stretch parallel to the *x* axis. $\frac{5400}{360} = 15$ and $15 \times 2 = 30$ which is also acceptable.
- **Note:** If candidates list 30 values and conclude that there are 30 solutions, score B1ftB1ft There is no need to check their 30 values are correct, but there must be 30.