Question	Scheme	Marks	AOs
14	Attempts the term in x^3 or the term in x^5 of $\left(3 - \frac{1}{2}x\right)^6$		
	Look for ${}^{6}C_{3}3^{3}\left(-\frac{1}{2}x\right)^{3}$ or ${}^{6}C_{5}3^{1}\left(-\frac{1}{2}x\right)^{5}$	M1	3.1a
	Correct term in x^3 or correct term in x^5 of $\left(3 - \frac{1}{2}x\right)^6$	A1	1.1b
	$-\frac{135}{2}x^3$ or $-\frac{9}{16}x^5$		
	Attempts one of the required terms in x^5 of $(5+8x^2)(3-\frac{1}{2}x)^6$	M1	1.1b
	Either $5 \times {}^{6}C_{5}3^{1}\left(-\frac{1}{2}x\right)^{5}$ or $8x^{2} \times {}^{6}C_{3}3^{3}\left(-\frac{1}{2}x\right)^{3}$		
	Attempts the sum of $5 \times {}^{6}C_{5}3^{1}\left(-\frac{1}{2}x\right)^{5}$ and $8x^{2} \times {}^{6}C_{3}3^{3}\left(-\frac{1}{2}x\right)^{3}$	dM1	2.1
	Coefficient of $x^5 = -\frac{45}{16} - 540 = -\frac{8685}{16}$	A1	1.1b
		(5)	
(5 marks)			narks)

Notes:

M1: For the key step in attempting to find one of the required terms in the expansion of $\left(3-\frac{1}{2}x\right)^6$ to enable the problem to be solved.

Look for ${}^{6}C_{3}3^{3}\left(-\frac{1}{2}x\right)^{3}$ or ${}^{6}C_{5}3^{1}\left(-\frac{1}{2}x\right)^{5}$ but condone missing brackets and slips in signs. May be part of a complete expansion but only one of the required terms needs to be of the correct form.

- A1: For $-\frac{135}{2} \{x^3\}$ or $-\frac{9}{16} \{x^5\}$ which may be unsimplified but the 6C_3 or 6C_5 must be processed. May be implied by $-540 \{x^5\}$ or $-\frac{45}{16} \{x^5\}$
- M1: Attempts one of the required terms in x^5 of the expansion of $(5+8x^2)(3-\frac{1}{2}x)^6$

Look for $5 \times {}^{6}C_{5}3^{1}\left(-\frac{1}{2}x\right)^{5}$ or $8x^{2} \times {}^{6}C_{3}3^{3}\left(-\frac{1}{2}x\right)^{3}$ which would also imply the previous M.

The x^5 may be missing as just the coefficient is required.

May be implied by
$$-540\left\{x^5\right\}$$
 or $-\frac{45}{16}\left\{x^5\right\}$

Condone missing brackets and signs.

You might see candidates make a slip in, e.g., their binomial coefficients, but have an (essentially) correct method to solve the problem.

Note that this M mark is not dependent on the first, so you may be able to award it even if they have made a slip in finding their x^3 or x^5 term in the expansion.

dM1: Attempts the sum of
$$5 \times {}^{6}C_{5}3^{1}\left(-\frac{1}{2}x\right)^{5}$$
 and $8x^{2} \times {}^{6}C_{3}3^{3}\left(-\frac{1}{2}x\right)^{3}$
Dependent on the previous M but may be scored at the same time.
The x^{5} may be missing as just the coefficients are required.
Condone missing brackets and signs.

A1:
$$-\frac{8685}{16}$$
 or exact equivalent, -542.8125 and apply isw
Condone $-\frac{8685}{16}x^5$ for A1
Note that rounded decimals, e.g., -542.81 will not score the last mark.

Note that full marks can be scored for concise solutions such as:

$$5 \times {}^{6}C_{5} \times 3 \times \left(-\frac{1}{2}\right)^{5} + 8 \times {}^{6}C_{3} \times 3^{3} \times \left(-\frac{1}{2}\right)^{3} = -\frac{8685}{16}$$

Alternative

Attempts via the taking out of the common factor can be scored in the same way.

$$\left(3 - \frac{1}{2}x\right)^{6} = 3^{6} \left\{1 + 6 \times \left(-\frac{1}{6}x\right)^{1} + \frac{6 \times 5}{2} \left(-\frac{1}{6}x\right)^{2} + \frac{6 \times 5 \times 4}{3!} \left(-\frac{1}{6}x\right)^{3} + \frac{6 \times 5 \times 4 \times 3}{4!} \left(-\frac{1}{6}x\right)^{4} + \frac{6 \times 5 \times 4 \times 3 \times 2}{5!} \left(-\frac{1}{6}x\right)^{5} + \left(-\frac{1}{6}x\right)^{6}\right\}$$

For M1 A1 look for $3^{6} \times \frac{6 \times 5 \times 4}{3!} \left(-\frac{1}{6}x\right)^{3}$ or $3^{6} \times \frac{6 \times 5 \times 4 \times 3 \times 2}{5!} \left(-\frac{1}{6}x\right)^{5}$
Score the remaining marks as per the main scheme.