Attempts the term in x^{3} or the term in x^{5} of $\left(3-\frac{1}{2} x\right)^{6}$ Look for ${ }^{6} \mathrm{C}_{3} 3^{3}\left(-\frac{1}{2} x\right)^{3}$ or ${ }^{6} \mathrm{C}_{5} 3^{1}\left(-\frac{1}{2} x\right)^{5}$	M1	3.1a
$\begin{gathered} \text { Correct term in } x^{3} \text { or correct term in } x^{5} \text { of }\left(3-\frac{1}{2} x\right)^{6} \\ -\frac{135}{2} x^{3} \text { or }-\frac{9}{16} x^{5} \end{gathered}$	A1	1.1b
Attempts one of the required terms in x^{5} of $\left(5+8 x^{2}\right)\left(3-\frac{1}{2} x\right)^{6}$ Either $5 \times{ }^{6} \mathrm{C}_{5} 3^{1}\left(-\frac{1}{2} x\right)^{5}$ or $8 x^{2} \times{ }^{6} \mathrm{C}_{3} 3^{3}\left(-\frac{1}{2} x\right)^{3}$	M1	1.1b
Attempts the sum of $5 \times{ }^{6} \mathrm{C}_{5} 3^{1}\left(-\frac{1}{2} x\right)^{5}$ and $8 x^{2} \times{ }^{6} \mathrm{C}_{3} 3^{3}\left(-\frac{1}{2} x\right)^{3}$	dM1	2.1
Coefficient of $x^{5}=-\frac{45}{16}-540=-\frac{8685}{16}$	A1	1.1b
	(5)	

Notes:

M1: For the key step in attempting to find one of the required terms in the expansion of $\left(3-\frac{1}{2} x\right)^{6}$ to enable the problem to be solved.
Look for ${ }^{6} \mathrm{C}_{3} 3^{3}\left(-\frac{1}{2} x\right)^{3}$ or ${ }^{6} \mathrm{C}_{5} 3^{1}\left(-\frac{1}{2} x\right)^{5}$ but condone missing brackets and slips in signs.
May be part of a complete expansion but only one of the required terms needs to be of the correct form.

A1: For $-\frac{135}{2}\left\{x^{3}\right\}$ or $-\frac{9}{16}\left\{x^{5}\right\}$ which may be unsimplified but the ${ }^{6} \mathrm{C}_{3}$ or ${ }^{6} \mathrm{C}_{5}$ must be processed. May be implied by $-540\left\{x^{5}\right\}$ or $-\frac{45}{16}\left\{x^{5}\right\}$
M1: Attempts one of the required terms in x^{5} of the expansion of $\left(5+8 x^{2}\right)\left(3-\frac{1}{2} x\right)^{6}$
Look for $5 \times{ }^{6} \mathrm{C}_{5} 3^{1}\left(-\frac{1}{2} x\right)^{5}$ or $8 x^{2} \times{ }^{6} \mathrm{C}_{3} 3^{3}\left(-\frac{1}{2} x\right)^{3}$ which would also imply the previous M. The x^{5} may be missing as just the coefficient is required.
May be implied by $-540\left\{x^{5}\right\}$ or $-\frac{45}{16}\left\{x^{5}\right\}$
Condone missing brackets and signs.
You might see candidates make a slip in, e.g., their binomial coefficients, but have an (essentially) correct method to solve the problem.
Note that this M mark is not dependent on the first, so you may be able to award it even if they have made a slip in finding their x^{3} or x^{5} term in the expansion.
dM1: Attempts the sum of $5 \times{ }^{6} \mathrm{C}_{5} 3^{1}\left(-\frac{1}{2} x\right)^{5}$ and $8 x^{2} \times{ }^{6} \mathrm{C}_{3} 3^{3}\left(-\frac{1}{2} x\right)^{3}$
Dependent on the previous M but may be scored at the same time.
The x^{5} may be missing as just the coefficients are required.
Condone missing brackets and signs.
A1: $\quad-\frac{8685}{16}$ or exact equivalent, -542.8125 and apply isw
Condone $-\frac{8685}{16} x^{5}$ for A1
Note that rounded decimals, e.g., -542.81 will not score the last mark.
Note that full marks can be scored for concise solutions such as:

$$
5 \times{ }^{6} \mathrm{C}_{5} \times 3 \times\left(-\frac{1}{2}\right)^{5}+8 \times{ }^{6} \mathrm{C}_{3} \times 3^{3} \times\left(-\frac{1}{2}\right)^{3}=-\frac{8685}{16}
$$

Alternative

Attempts via the taking out of the common factor can be scored in the same way.
$\left(3-\frac{1}{2} x\right)^{6}=3^{6}\left\{1+6 \times\left(-\frac{1}{6} x\right)^{1}+\frac{6 \times 5}{2}\left(-\frac{1}{6} x\right)^{2}+\frac{6 \times 5 \times 4}{3!}\left(-\frac{1}{6} x\right)^{3}+\frac{6 \times 5 \times 4 \times 3}{4!}\left(-\frac{1}{6} x\right)^{4}+\frac{6 \times 5 \times 4 \times 3 \times 2}{5!}\left(-\frac{1}{6} x\right)^{5}+\left(-\frac{1}{6} x\right)^{6}\right\}$
For M1 A1 look for $3^{6} \times \frac{6 \times 5 \times 4}{3!}\left(-\frac{1}{6} x\right)^{3}$ or $3^{6} \times \frac{6 \times 5 \times 4 \times 3 \times 2}{5!}\left(-\frac{1}{6} x\right)^{5}$
Score the remaining marks as per the main scheme.

