Questi	on Scheme	Marks	AOs
15 (a	Attempts both $y = 8 - 10 \times 1 + 6 \times 1^2 - 1^3$ and $y = 1^2 - 12 \times 1 + 14$	M1	1.1b
	Achieves $y = 3$ for both equations and gives a minimal conclusion / statement, e.g., (1, 3) lies on both curves so they intersect at $x = 1$	A1	1.1b
		(2)	
(b)	(Curves intersect when) $x^{2} - 12x + 14 = 8 - 10x + 6x^{2} - x^{3}$ $\Rightarrow x^{3} - 5x^{2} - 2x + 6 = 0$	M1	1.1b
	For the key step in dividing by $(x-1)$ $x^{3}-5x^{2}-2x+6=(x-1)(x^{2}+px\pm 6)$	dM1	3.1a
	$x^{3}-5x^{2}-2x+6=(x-1)(x^{2}-4x-6)$	A1	1.1b
	Solves $x^{2}-4x-6=0$ $(x-2)^{2}=10 \Longrightarrow x=$	ddM1	1.1b
	$x = 2 - \sqrt{10} \text{ only}$	A1	1.1b
		(5)	
(7 marks)			
Notes:			
 (a) Must be seen in (a) M1: As scheme. For M1 A0, allow a statement that (1,3) lies on both curves without sight of the calculation. Amongst various alternatives are: Setting x²-12x+14-8-10x+6x²-x³ and attempting to rearrange to 			

- $x^3 5x^2 2x + 6 = 0$ before substituting in x = 1
- Setting $x^2 12x + 14 = 8 10x + 6x^2 x^3$ and attempting to divide $x^3 5x^2 2x + 6$ by (x-1) either by long division or inspection

A1: For the complete mathematical argument. Requires both correct calculations with a minimal conclusion, which may be as a preamble. e.g., in the alternatives

• as $1^3 - 5 \times 1^2 - 2 \times 1 + 6 = 0$, hence curves meet when x = 1

•
$$x^3 - 5x^2 - 2x + 6 = (x-1)(x^2 - 4x - 6)$$
 so the curves intersect when $x = 1$

- (b) Allow the use of *x* or *k* throughout this part.
- M1: Sets $x^2 12x + 14 = 8 10x + 6x^2 x^3$ and proceeds to a cubic equation set = 0 Must be seen or used in (b)
- **dM1:** For the key step in realising that (x-1) is a factor of the cubic. It is for dividing by (x-1) to get the quadratic factor.

For division look for their first two terms, i.e., $x^2 \pm 4x$

(This will need checking if they have made an error in rearranging the cubic.)

 $x-1) \frac{x^{2} \pm 4x...}{x^{3}-5x^{2}-2x+6}$ $\frac{x^{3}-1x^{2}}{-4x^{2}}$

By inspection look for the first and last term $x^3 - 5x^2 - 2x + 6 = (x-1)(x^2 + px \pm 6)$

A1:
$$x^3 - 5x^2 - 2x + 6 = (x - 1)(x^2 - 4x - 6)$$
 or just $x^2 - 4x - 6$ or $k^2 - 4k - 6$ as their quadratic

factor following algebraic division.

ddM1: Attempts to solve their $x^2 - 4x - 6 = 0$, which must be a 3TQ, by completing the square or the quadratic formula, leading to an exact solution. Their quadratic factor must **not** factorise. Their quadratic "factor" may come from algebraic division that has a remainder but we will still allow them to score this mark.

If using the quadratic formula, they need to have, e.g., $\frac{4-\sqrt{4^2-4(-6)}}{2}$

or $\frac{4-\sqrt{40}}{2}$ as a minimum (i.e., they must not jump straight to $2-\sqrt{10}$ from a calculator).

A1:
$$k = 2 - \sqrt{10}$$
 or exact equivalent but allow the use of x e.g., $x = \frac{4 - \sqrt{40}}{2}$
If using the quadratic formula, the discriminant must be processed.
Must come from a correct quadratic factor.
They must have discarded $2 + \sqrt{10}$ if seen.