15 (a)	Attempts both $y=8-10 \times 1+6 \times 1^{2}-1^{3}$ and $y=1^{2}-12 \times 1+14$	M1	1.1b
	Achieves $y=3$ for both equations and gives a minimal conclusion / statement, e.g., $(1,3)$ lies on both curves so they intersect at $x=1$	A1	1.1b
		(2)	
(b)	$\text { (Curves intersect when) } \begin{aligned} & x^{2}-12 x+14=8-10 x+6 x^{2}-x^{3} \\ \Rightarrow & x^{3}-5 x^{2}-2 x+6=0 \end{aligned}$	M1	1.1b
	For the key step in dividing by $(x-1)$ $x^{3}-5 x^{2}-2 x+6=(x-1)\left(x^{2}+p x \pm 6\right)$	dM1	3.1a
	$x^{3}-5 x^{2}-2 x+6=(x-1)\left(x^{2}-4 x-6\right)$	A1	1.1b
	Solves $\begin{aligned} & x^{2}-4 x-6=0 \\ & (x-2)^{2}=10 \Rightarrow x=\ldots \end{aligned}$	ddM1	1.1b
	$x=2-\sqrt{10}$ only	A1	1.1b
		(5)	
(7 marks)			

Notes:

(a) Must be seen in (a)

M1: As scheme.
For M1 A0, allow a statement that $(1,3)$ lies on both curves without sight of the calculation.
Amongst various alternatives are:

- Setting $x^{2}-12 x+14=8-10 x+6 x^{2}-x^{3}$ and attempting to rearrange to $x^{3}-5 x^{2}-2 x+6=0 \quad$ before substituting in $x=1$
- Setting $x^{2}-12 x+14=8-10 x+6 x^{2}-x^{3}$ and attempting to divide $x^{3}-5 x^{2}-2 x+6$ by ($x-1$) either by long division or inspection

A1: For the complete mathematical argument.
Requires both correct calculations with a minimal conclusion, which may be as a preamble. e.g., in the alternatives

- as $1^{3}-5 \times 1^{2}-2 \times 1+6=0$, hence curves meet when $x=1$
- $x^{3}-5 x^{2}-2 x+6=(x-1)\left(x^{2}-4 x-6\right)$ so the curves intersect when $x=1$

(b) Allow the use of x or k throughout this part.

M1: Sets $x^{2}-12 x+14=8-10 x+6 x^{2}-x^{3}$ and proceeds to a cubic equation set $=0$ Must be seen or used in (b)
dM1: For the key step in realising that $(x-1)$ is a factor of the cubic.
It is for dividing by $(x-1)$ to get the quadratic factor.

For division look for their first two terms, i.e., $x^{2} \pm 4 x$
(This will need checking if they have made an error in rearranging the cubic.)

$$
\begin{gathered}
\frac{x^{2} \pm 4 x \ldots \ldots \ldots \ldots}{x - 1 \longdiv { x ^ { 3 } - 5 x ^ { 2 } - 2 x + 6 }} \\
\frac{x^{3}-1 x^{2}}{-4 x^{2}}
\end{gathered}
$$

By inspection look for the first and last term $x^{3}-5 x^{2}-2 x+6=(x-1)\left(x^{2}+p x \pm 6\right)$
A1: $\quad x^{3}-5 x^{2}-2 x+6=(x-1)\left(x^{2}-4 x-6\right)$ or just $x^{2}-4 x-6$ or $k^{2}-4 k-6$ as their quadratic factor following algebraic division.
ddM1: Attempts to solve their $x^{2}-4 x-6=0$, which must be a $3 T Q$, by completing the square or the quadratic formula, leading to an exact solution. Their quadratic factor must not factorise. Their quadratic "factor" may come from algebraic division that has a remainder but we will still allow them to score this mark.
If using the quadratic formula, they need to have, e.g., $\frac{4-\sqrt{4^{2}-4(-6)}}{2}$
or $\frac{4-\sqrt{40}}{2}$ as a minimum (i.e., they must not jump straight to $2-\sqrt{10}$ from a calculator).
A1: $\quad k=2-\sqrt{10}$ or exact equivalent but allow the use of x e.g., $x=\frac{4-\sqrt{40}}{2}$
If using the quadratic formula, the discriminant must be processed.
Must come from a correct quadratic factor.
They must have discarded $2+\sqrt{10}$ if seen.

