17 (a)	Provides a counter example with a reason. e.g., $6^{3}-1^{3}=215$ which is a multiple of 5	B1	2.4
		(1)	
(b)	States or uses, e.g., $2 n$ and $2 n+2$ or $2 n+2$ and $2 n+4$	M1	2.1
	Attempts $(2 n+2)^{3}-(2 n)^{3}=8 n^{3}+24 n^{2}+24 n+8-8 n^{3}$ leading to a quadratic.	dM1	1.1b
	$=24 n^{2}+24 n+8$	A1	1.1b
	$24 n^{2}+24 n+8=8\left(3 n^{2}+3 n+1\right)$ So $q^{3}-p^{3}$ is a multiple of 8	A1	2.1
		(4)	

(5 marks)

Notes:

(a)

B1: Provides a counter example with a reason. There is no need to state "not true".
e.g., $7^{3}-2^{3}=335$ which divides by 5 \{exactly \}.

It is sufficient to have, e.g., $9^{3}-4^{3}=665$ and $\frac{665}{5}=133$
Here q must be greater than p and both must be natural numbers, not 0 or negatives.
Note that any pair of positive integers n and $n+5 k$ will provide a counter example, but $q^{3}-p^{3}$ must be evaluated correctly, and if they divide by 5 this also needs to be correct.
(b)

M1: For the key step in stating the algebraic form of consecutive even numbers.
See main scheme for examples. They might be used either way round for this mark.
dM1: Attempts $(2 n+2)^{3}-(2 n)^{3}=\ldots$ condoning slips but must lead to a quadratic.
Alternatively, $(2 n+2)^{3}-(2 n)^{3}=2^{3}\left\{(n+1)^{3}-n^{3}\right\}$
May be subtracted the wrong way round for this mark as below.
$(2 n)^{3}-(2 n+2)^{3}=\ldots$ but this will score M1dM1A0A0
A1: \quad e.g., $(2 n+2)^{3}-(2 n)^{3}=24 n^{2}+24 n+8$ or $(2 n+4)^{3}-(2 n+2)^{3}=24 n^{2}+72 n+56$
or $(2 n+2)^{3}-(2 n)^{3}=8\left\{(n+1)^{3}-n^{3}\right\}$ or $(2 n)^{3}-(2 n-2)^{3}=24 n^{2}-24 n+8$ etc.
Must come from correct work and the algebra will need checking carefully.
A1: For a full and rigorous proof showing all necessary steps including:

- correct quadratic expression for $q^{3}-p^{3}$ for their even numbers, e.g., $24 n^{2}+24 n+8$
- reason e.g., $24 n^{2}+24 n+8=8\left(3 n^{2}+3 n+1\right)$ or, e.g., in $24 n^{2}+24 n+8$ the coefficients are all multiples of 8
- minimal conclusion, "hence true"

Alt 1:

If the even numbers are set as n and $n+2$ there must be sufficient work seen before marks can be awarded.
e.g.,

M1dM1: $\quad n=2 k \Rightarrow(n+2)^{3}-n^{3}=\ldots n^{2}+\ldots n+\ldots=\ldots(2 k)^{2}+\ldots(2 k)+\ldots$
A1: $\quad=24 k^{2}+24 k+8$
A1: $\quad=8\left(3 k^{2}+3 k+1\right)$ so $q^{3}-p^{3}$ is a multiple of 8

Alt 2:

If they just use any two even numbers, e.g., $2 a$ and $2 b$, or $2 m$ and $2 n+2$ then they will score as follows:
M1: $\quad(2 a)^{3}-(2 b)^{3}$ Condone missing brackets if recovered.
$\mathbf{d M 1 : ~}=\ldots a^{3}-\ldots b^{3}$
A1: $=8 a^{3}-8 b^{3}$ Note $8\left(a^{3}-b^{3}\right)$ would imply this mark.
A1: $\quad=8\left(a^{3}-b^{3}\right)$ so $q^{3}-p^{3}$ is a multiple of 8 if q and p are $\{$ any two $\}$ even \{numbers \}
and hence $q^{3}-p^{3}$ is a multiple of 8 if q and p are consecutive even numbers

