Quest	tion	Scheme	Marks	AOs	
17	(a)	Provides a counter example with a reason. $3 - 3$	B1	2.4	
		e.g., $6^{\circ} - 1^{\circ} = 215$ which is a multiple of 5			
			(1)		
(b)	States or uses, e.g., $2n$ and $2n+2$ or $2n+2$ and $2n+4$	M1	2.1	
		Attempts $(2n+2)^3 - (2n)^3 = 8n^3 + 24n^2 + 24n + 8 - 8n^3$	dM1	1.1b	
		leading to a quadratic.			
		$= 24n^2 + 24n + 8$	A1	1.1b	
		$24n^2 + 24n + 8 = 8(3n^2 + 3n + 1)$	A1	2.1	
		So $q^3 - p^3$ is a multiple of 8		2.1	
			(4)		
	(5 marks)				
Notes:					
(b) M1:	e.g., $7^3 - 2^3 = 335$ which divides by 5 {exactly}. It is sufficient to have, e.g., $9^3 - 4^3 = 665$ and $\frac{665}{5} = 133$ Here <i>q</i> must be greater than <i>p</i> and both must be natural numbers, not 0 or negatives. Note that any pair of positive integers <i>n</i> and <i>n</i> +5 <i>k</i> will provide a counter example, but $q^3 - p^3$ must be evaluated correctly, and if they divide by 5 this also needs to be correct. For the key step in stating the algebraic form of consecutive even numbers. See main scheme for examples. They might be used either way round for this mark				
dM1:	Attempts $(2n+2)^3 - (2n)^3 =$ condoning slips but must lead to a quadratic.				
	Alternatively, $(2n+2)^3 - (2n)^3 = 2^3 \{(n+1)^3 - n^3\}$				
	May be subtracted the wrong way round for this mark as below.				
	$(2n)^3 - (2n+2)^3 = \dots$ but this will score M1dM1A0A0				
A1:	e.g., $(2n+2)^3 - (2n)^3 = 24n^2 + 24n + 8$ or $(2n+4)^3 - (2n+2)^3 = 24n^2 + 72n + 56$				
	or $(2n+2)^3 - (2n)^3 = 8 \{(n+1)^3 - n^3\}$ or $(2n)^3 - (2n-2)^3 = 24n^2 - 24n + 8$ etc.				
A1:	Must come from correct work and the algebra will need checking carefully. For a full and rigorous proof showing all necessary steps including: • correct quadratic expression for $q^3 - p^3$ for their even numbers, e.g., $24n^2 + 24n + 8$ • reason e.g., $24n^2 + 24n + 8 = 8(3n^2 + 3n + 1)$ or, e.g., in $24n^2 + 24n + 8$ the coefficients			3 ents	
	а	re all multiples of 8			

• minimal conclusion, "hence true"

Alt 1:

If the even numbers are set as n and n + 2 there must be sufficient work seen before marks can be awarded.

e.g.,
M1dM1:
$$n = 2k \Rightarrow (n+2)^3 - n^3 = ...n^2 + ...n + ... = ...(2k)^2 + ...(2k) + ...$$

A1: $= 24k^2 + 24k + 8$
A1: $= 8(3k^2 + 3k + 1)$ so $q^3 - p^3$ is a multiple of 8

Alt 2:

If they just use any two even numbers, e.g., 2a and 2b, or 2m and 2n + 2 then they will score as follows:

M1:
$$(2a)^3 - (2b)^3$$
 Condone missing brackets if recovered.
dM1: $= \dots a^3 - \dots b^3$

A1:
$$=8a^3-8b^3$$
 Note $8(a^3-b^3)$ would imply this mark.

A1: $=8(a^3-b^3)$ so q^3-p^3 is a multiple of 8 if q and p are {any two} even {numbers} and hence q^3-p^3 is a multiple of 8 if q and p are *consecutive* even numbers