Question	Scheme	Marks	AOs	
1(a)	$x^3 \rightarrow x^2 \text{ or } 5x \rightarrow 5 \text{ or } x^{-1} \rightarrow x^{-2}$	M1	1.1b	
	Two of $+\frac{9}{2}x^2$, -5, $+\frac{10}{x^2}$	A1	1.1b	
	$\frac{dy}{dx} = \frac{9}{2}x^2 - 5 + \frac{10}{x^2}$	A1	1.1b	
		(3)		
(b)	$\left(\frac{dy}{dx}\right) = \frac{9}{2}(-2)^2 - 5 + \frac{10}{(-2)^2} = \dots \left(=\frac{31}{2}\right)$	M1	1.1b	
	$"\frac{31}{2}" \rightarrow "-\frac{2}{31}"$	dM1	1.2	
	$y-3 = "-\frac{2}{31}"(x+2)$	dM1	1.1b	
	2x + 31y - 89 = 0	A1	1.1b	
		(4)		
(7 marks)				
Notes				
(a)				
M1: Reduces the power of <i>x</i> by one on one of the terms (indices do not need to be processed)				
A1: Tw	A1: Two correct unsimplified terms (may be given in a list)			
A1: $\frac{9}{2}x^2 - 5 + \frac{10}{x^2}$ or simplified equivalent e.g. $4.5x^2 - 5 + 10x^{-2}$				

- **(b)**
- M1: Attempts to find the gradient of the curve at x = -2
- dM1: Finds the negative reciprocal of the gradient found at x = -2. It is dependent on the first method mark.

dM1: Attempts to find the equation of the normal using a changed gradient at (-2, 3). If they use y = mx + c they must proceed as far as c = It is dependent on the first method mark.

A1: 2x+31y-89=0 or any integer multiple of this equation