Question	Scheme	Marks	AOs
1(a)	$x^{3} \rightarrow x^{2}$ or $5 x \rightarrow 5$ or $x^{-1} \rightarrow x^{-2}$	M1	1.1b
	Two of $+\frac{9}{2} x^{2},-5,+\frac{10}{x^{2}}$	A1	1.1b
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{9}{2} x^{2}-5+\frac{10}{x^{2}}$	A1	1.1b
		(3)	
(b)	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{9}{2}(-2)^{2}-5+\frac{10}{(-2)^{2}}=\ldots\left(=\frac{31}{2}\right)$	M1	1.1b
	$" \frac{31}{2} " \rightarrow "-\frac{2}{31}{ }^{\prime}$	dM1	1.2
	$y-3="-\frac{2}{31} "(x+2)$	dM1	1.1b
	$2 x+31 y-89=0$	A1	1.1b
		(4)	
(7 marks)			

Notes

(a)

M1: Reduces the power of x by one on one of the terms (indices do not need to be processed)
A1: Two correct unsimplified terms (may be given in a list)
A1: $\quad \frac{9}{2} x^{2}-5+\frac{10}{x^{2}}$ or simplified equivalent e.g. $4.5 x^{2}-5+10 x^{-2}$
(b)

M1: Attempts to find the gradient of the curve at $x=-2$
dM1: Finds the negative reciprocal of the gradient found at $x=-2$. It is dependent on the first method mark.
dM1: Attempts to find the equation of the normal using a changed gradient at $(-2,3)$. If they use $y=m x+c$ they must proceed as far as $c=\ldots$. It is dependent on the first method mark.

A1: $2 x+31 y-89=0$ or any integer multiple of this equation

