Question	Scheme	Marks	AOs
3(a)	$\mathrm{f}(2)=6(2)^{3}-(2 a+5)(2)^{2}+21(2)+a=0$	M1	1.2
	$48-8 a-20+42+a=0 \Rightarrow a=10$ *	A1*	2.4
		(2)	
(b)	At least two of $p=6, q=-13, r=-5$ for $(x-2)\left(p x^{2}+q x+r\right)=0$	M1	3.1a
	$6 x^{2}-13 x-5$	A1	1.1b
	$(3 x+1)(2 x-5)=0 \Rightarrow x=\ldots$	M1	1.1b
	$x=-\frac{1}{3}, \frac{5}{2}, 2$	A1	2.2a
		(4)	
(c)	$x=\frac{1}{3}$	B1ft	2.2a
		(1)	

(7 marks)

Notes

(a)

M1: Substitutes 2 into the expression for $\mathrm{f}(x)$ and sets equal to 0
A1*: Rearranges to achieve the given answer with at least one intermediate stage of working seen.
(b)

M1: Uses $(x-2)$ to find the quadratic factor $p x^{2}+q x+r$. Implied by at least two correct constants.
A1: $\quad 6 x^{2}-13 x-5$
M1: Attempts to solve their quadratic $=0$ by factorising, completing the square or using the formula. It cannot be just from stating the values from a calculator.

A1: $\quad x=-\frac{1}{3}, \frac{5}{2}, 2$ or equivalent
(c)

B1 ft: $\quad x=\frac{1}{3}$ or follow through their smallest value from (b)

