Question	Scheme	Marks	AOs
6(a)	$(x+4)^{2}+(y-3)^{2}$	M1	1.1b
(i)	Centre ($-4,3$)	A1	1.1b
(ii)	Radius is $\sqrt{32}$	A1	1.1b
		(3)	
(b)	$x^{2}+(2 x+k)^{2}+8 x-6(2 x+k)-7=0 \Rightarrow \ldots x^{2} \pm \ldots x \pm \ldots=0$	M1	1.1b
	$b^{2}-4 a c=(4 k-4)^{2}-4 \times 5 \times\left(k^{2}-6 k-7\right)$	dM1	2.1
	$k^{2}-22 k-39=0 \Rightarrow k=\ldots$	M1	3.1a
	$k=11-4 \sqrt{10}$ only	A1	2.2a
		(4)	
(7 marks)			

Notes

(a)

M1: Attempts to complete the square. Score for $(x \pm 4)^{2} \ldots(y \pm 3)^{2}$

A1: $\quad(-4,3)$
A1: $\quad \sqrt{32}($ or $4 \sqrt{2})$
(b)

M1: Substitutes $y=2 x+k$ into the equation of the circle and proceeds to a three-term quadratic (3TQ) in x where the coefficients of " b " and " c " are both in terms of k
dM1: Attempts to find $b^{2}-4 a c$ for a 3TQ where the coefficients of " b " and " c " are both in terms of k. It is dependent on the first method mark.

M1: A complete method to find a value for k. They must have substituted $y=2 x+k$ into the equation of the circle, attempted to find the discriminant and attempted to solve the resulting quadratic, in terms of k, set equal to zero.

A1: $\quad k=11-4 \sqrt{10}$ or equivalent only. They must have rejected the positive solution.
There may be other geometrical methods to solving (b) e.g.
M1: As the tangent line $y=2 x+k$ has gradient 2 , the gradient between the centre of the circle and the point where the line $y=2 x+k$ touches C is $-\frac{1}{2}$.
$\Rightarrow(2 t)^{2}+t^{2}=32$ for a parameter t and attempts to solve $(2 t)^{2}+t^{2}=32$ leading to a value for $t\left(=\frac{4 \sqrt{10}}{5}\right)$
dM1: Substitutes their value of t to find the coordinates of the point where the tangent touches the circle. $(-4+2 " t ", 3-" t ")$

M1: A complete method to find a value of k using $k=y-2 x$
A1: $\quad k=11-4 \sqrt{10}$

