Question	Scheme	Marks	AOs
6(a)	$(x+4)^2 + (y-3)^2$	M1	1.1b
(i)	Centre (-4, 3)	A1	1.1b
(ii)	Radius is $\sqrt{32}$	A1	1.1b
-		(3)	
(b)	$x^{2} + (2x+k)^{2} + 8x - 6(2x+k) - 7 = 0 \Longrightarrow \dots x^{2} \pm \dots x \pm \dots = 0$	M1	1.1b
	$b^2 - 4ac = (4k - 4)^2 - 4 \times 5 \times (k^2 - 6k - 7)$	dM1	2.1
	$k^2 - 22k - 39 = 0 \Longrightarrow k = \dots$	M1	3.1a
-	$k = 11 - 4\sqrt{10} \text{ only}$	A1	2.2a
		(4)	
(7 marks)			
Notes			

(a)

M1: Attempts to complete the square. Score for $(x \pm 4)^2 \dots (y \pm 3)^2$

- A1: (-4, 3)
- A1: $\sqrt{32}$ (or $4\sqrt{2}$)

(b)

- M1: Substitutes y = 2x + k into the equation of the circle and proceeds to a three-term quadratic (3TQ) in x where the coefficients of "b" and "c" are both in terms of k
- dM1: Attempts to find $b^2 4ac$ for a 3TQ where the coefficients of "b" and "c" are both in terms of k. It is dependent on the first method mark.
- M1: A complete method to find a value for *k*. They must have substituted y = 2x + k into the equation of the circle, attempted to find the discriminant and attempted to solve the resulting quadratic, in terms of *k*, set equal to zero.
- A1: $k = 11 4\sqrt{10}$ or equivalent only. They must have rejected the positive solution.

There may be other geometrical methods to solving (b) e.g.

M1: As the tangent line y = 2x + k has gradient 2, the gradient between the centre of the circle and the point where the line y = 2x + k touches C is $-\frac{1}{2}$.

 $\Rightarrow (2t)^{2} + t^{2} = 32 \text{ for a parameter } t \text{ and attempts to solve } (2t)^{2} + t^{2} = 32 \text{ leading to a}$ value for $t \left(= \frac{4\sqrt{10}}{5} \right)$ dM1: Substitutes their value of t to find the coordinates of the point where the tangent touches

the circle.
$$(-4+2"t", 3-"t")$$

M1: A complete method to find a value of k using k = y - 2x

A1:
$$k = 11 - 4\sqrt{10}$$