Question	Scheme	Marks	AOs
7(a)	2^{7} or 128 as the constant term	B1	1.1b
	$\begin{gathered} \left(2-\frac{3 x}{4}\right)^{7}=\ldots+{ }^{7} \mathrm{C}_{1}(2)^{6}\left(-\frac{3 x}{4}\right)+{ }^{7} \mathrm{C}_{2}(2)^{5}\left(-\frac{3 x}{4}\right)^{2}+{ }^{7} \mathrm{C}_{3}(2)^{4}\left(-\frac{3 x}{4}\right)^{3}+. . \\ \\ =\ldots+7 \times(2)^{6}\left(-\frac{3 x}{4}\right)+21 \times(2)^{5}\left(-\frac{3 x}{4}\right)^{2}+35 \times(2)^{4}\left(-\frac{3 x}{4}\right)^{3}+\ldots \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$=128-336 x+378 x^{2}-\frac{945}{4} x^{3}+\ldots$	A1	1.1b
		(4)	
(b)	Coefficient of x^{2} is " $-336 "+5 \times$ " 378 "	M1	3.1a
	$=1554$	A1	1.1b
		(2)	
(6 marks)			
Notes			
(a)			
B1: Sight of 2^{7} or 128 as the constant term			
M1: A $2^{\text {n }}$ po	An attempt at the binomial expansion. This can be awarded for the correct structure of the $2^{\text {nd }}, 3^{\text {rd }}$ or $4^{\text {th }}$ term. The correct binomial coefficient must be associated with the correct power of 2 and the correct power of $\pm \frac{3 x}{4}$		
$\text { A1: } \quad \begin{aligned} & \mathrm{Fo} \\ & \mathrm{ev} \end{aligned}$	For a correct simplified or unsimplified second or fourth term (with binomial coefficients evaluated)		
A1: (b)	$128-336 x+378 x^{2}-\frac{945}{4} x^{3}$ which may be written as a list		
M1: A	A correct strategy for the required coefficient.		
A1: 15	1554 cao		

