Question	Scheme	Marks	AOs
8(a)	$(2 x-1)^{2}=(x-1)^{2}+(x+3)^{2}-2(x-1)(x+3) \cos 60^{\circ}$ oe	M1	3.1a
	Uses $\cos 60^{\circ}=\frac{1}{2}$, expands the brackets and proceeds to a 3TQ	dM1	1.1b
	$x^{2}-2 x-4=0$ *	A1*	2.1
		(3)	
(b)	$(x=) 1+\sqrt{5}$	B1	3.2a
	Area $=\frac{1}{2} \times \sqrt{5} \times(4+\sqrt{5}) \times \sin 60^{\circ}$	M1	1.1a
	Area $=$ awrt $6.04\left(\mathrm{~cm}^{2}\right)$	A1	1.1b
		(3)	

(6 marks)

Notes

(a)

M1: Recognises the need to apply the cosine rule and attempts to use it with sides in the correct positions and the formula applied correctly.
dM1: Uses $\cos 60^{\circ}=\frac{1}{2}$, which may be implied, expands the brackets and proceeds to a 3-term quadratic with terms on one side.

A1*: Obtains the correct quadratic equation with no errors seen.
(b)

B1: Deduces that the value of x is $1+\sqrt{5}$. May be implied by the value used in their attempt to find the area of the triangle.

M1: Attempt to find the area of the triangle with the correct lengths used. The expression is sufficient for this mark.

A1: awrt $6.04\left(\mathrm{~cm}^{2}\right)$ Condone lack of units

