Question	Scheme	Marks	AOs
11(a)	200 (miles)	B1	3.4
		(1)	
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{250} x^{2}-\frac{6}{5} x+24$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} 3.4 \\ 1.1 \mathrm{~b} \end{gathered}$
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow \frac{3}{250} x^{2}-\frac{6}{5} x+24=0 \Rightarrow x=\ldots$	M1	1.1b
	$x=$ awrt 27.6 only	A1	2.3
		(4)	
(c)	$\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\right) \frac{3}{125} x-\frac{6}{5}=\frac{3}{125}(27.6 ")-\frac{6}{5}$	M1	1.1b
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=(-0.5 \ldots)<0 \Rightarrow$ Hence y is maximised	A1	2.4
		(2)	
(d)	Maximum distance $=\frac{1}{250}(" 27.6 ")^{3}-\frac{3}{5}(" 27.6 ")^{2}+24(" 27.6 ")$	M1	3.4
	Maximum distance $=$ awrt 289 (miles)	A1	1.1b
		(2)	
(9 marks)			

Notes

(a)

B1: 200 (miles)
(b)

M1: Attempts to differentiate $y=\frac{1}{250} x^{3}-\frac{3}{5} x^{2}+24 x$ (decreases the power by one on at least one of their terms)
A1: $\quad \frac{3}{250} x^{2}-\frac{6}{5} x+24$
M1: Sets their derivative $=0$ and attempts to solve their 3TQ to find a value for x
A1: awrt 27.6 only (they must reject 72.4 if found)
(c)

M1: Attempts to differentiate their quadratic to achieve a linear expression and substitutes in their value for x or considers the sign of the second derivative.

A1: Correct derivative, calculation and conclusion
(d)

M1: Substitutes in their value for x into the original equation to find a value for y
A1: awrt 289

