Question	Scheme	Marks	AOs
13(a)	$\text { e.g. } \frac{\tan \theta\left(16+9 \sin ^{2} \theta\right)}{3 \sin \theta+5 \tan \theta}=\frac{16+9 \sin ^{2} \theta}{3 \cos \theta+5}$	M1	2.1
	$=\frac{16+9\left(1-\cos ^{2} \theta\right)}{3 \cos \theta+5}$	M1	1.1b
	$\frac{25-9 \cos ^{2} \theta}{3 \cos \theta+5}=\frac{(5-3 \cos \theta)(5+3 \cos \theta)}{3 \cos \theta+5}$	M1	1.1b
	$=5-3 \cos \theta$ *	A1*	2.2a
		(4)	
(b)	$5-3 \cos 2 x=\frac{4}{\cos 2 x}-3 \Rightarrow \ldots \cos ^{2} 2 x+\ldots \cos 2 x+\ldots=0$	M1	1.1b
	$3 \cos ^{2} 2 x-8 \cos 2 x+4=0$	A1	1.1b
	$\cos 2 x=\frac{2}{3} \Rightarrow x=\ldots$	M1	2.1
	$x=$ awrt 24.1 , awrt 155.9	A1	1.1b
		(4)	

Notes

(a) There are various methods to prove the identity so the method marks may be awarded in a different order to how they have been listed below:
M1: Uses $\tan \theta=\frac{\sin \theta}{\cos \theta}$ to achieve an expression in $\sin \theta$ and $\cos \theta$
M1: Attempts to use $\pm \sin ^{2} \theta \pm \cos ^{2} \theta= \pm 1$ to achieve an expression in $\cos \theta$ only
M1: Factorises $\left(9 \cos ^{2} \theta-25\right)$ into $(3 \cos \theta+5)(3 \cos \theta-5)$ or alternatively they may attempt to multiply $(3 \sin \theta+5 \tan \theta)(5-3 \cos \theta)$ leading to four terms.

A1*: Achieves the given answer with all intermediate stages shown or alternatively if they multiply both sides by $3 \sin \theta+5 \tan \theta$ then look for both sides being equal and either a conclusion or a preamble with minimal conclusion e.g. tick/QED
(b)

M1: Sets $5-3 \cos 2 x=\frac{4}{\cos 2 x}-3$ and rearranges the equation to achieve a 3-term quadratic in $\cos 2 x$

A1: $\quad 3 \cos ^{2} 2 x-8 \cos 2 x+4=0$
M1: A correct method to solve their 3-term quadratic in $\cos 2 x$ and proceeds to find a value for x

A1: $\quad x=\operatorname{awrt} 24.1$, awrt 155.9 and no others in the range

