Question	Scheme	Marks	AOs
14(a)	$\frac{25 x^{2}-30 x-9}{2 x^{\frac{1}{2}}}=\ldots x^{\frac{3}{2}} \pm \ldots x^{\frac{1}{2}} \pm \ldots x^{-\frac{1}{2}}$	M1	1.1b
	$\frac{25}{2} x^{\frac{3}{2}}-15 x^{\frac{1}{2}}-\frac{9}{2} x^{-\frac{1}{2}}$	A1	1.1b
	$\int \frac{25}{2} x^{\frac{3}{2}}-15 x^{\frac{1}{2}}-\frac{9}{2} x^{-\frac{1}{2}} \mathrm{~d} x=\ldots x^{\frac{5}{2}} \pm \ldots x^{\frac{3}{2}} \pm \ldots x^{\frac{1}{2}}(+c)$	M1	1.1b
	$5 x^{\frac{5}{2}}-10 x^{\frac{3}{2}}-9 x^{\frac{1}{2}}+c$	A1	1.1b
		(4)	
(b)(i)	$5 k^{\frac{5}{2}}-10 k^{\frac{3}{2}}-9 k^{\frac{1}{2}}-(-14)<6 \sqrt{k}+14$	M1	1.1b
	$5 k^{\frac{5}{2}}-10 k^{\frac{3}{2}}-15 k^{\frac{1}{2}}<0 \Rightarrow k^{\frac{1}{2}}(\ldots \ldots . .)<0$	dM1	2.1
	$k^{2}-2 k-3<0$ *	A1*	1.1b
(ii)	Critical values $-1,3 \Rightarrow k<3$	M1	1.1b
	$2<k<3$	A1	3.2a
		(5)	

(9 marks)

Notes

(a)

M1: Expands the bracket and attempts to split the fraction up into separate terms and achieves at least one correct index on one term from correct work
A1: Two correct of $\frac{25}{2} x^{\frac{3}{2}},-15 x^{\frac{1}{2}},-\frac{9}{2} x^{-\frac{1}{2}}$ which may be simplified or unsimplified
M1: Increases the power of x by one on at least one term (which must be a fractional power)
A1: $\quad 5 x^{\frac{5}{2}}-10 x^{\frac{3}{2}}-9 x^{\frac{1}{2}}+c$ (including the $+c$)
(b)(i)

M1: Substitutes in the limits k and 1 , subtracts either way round and sets less than $6 \sqrt{k}+14$. Do not be concerned if an equals or an inequality sign is used.
$\mathrm{dM1}$: Attempts to rearrange their inequality and either takes out a factor or cancels by $k^{\frac{1}{2}}$ leading to a 3 TQ . Do not be concerned if an equals or an inequality sign is used. It is dependent on the first method mark.

A1*: $\quad k^{2}-2 k-3<0$ with no errors seen and all stages of working shown
(ii)

M1: Finds the critical values for the given inequality and selects $k<a$ where a is their larger critical value. Condone e.g. $-1<k<a$

A1: $\quad 2<k<3$ only (or equivalent)

