| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 5}$ | $(x+7)(x+1)>2 x-3 \Rightarrow x^{2}+8 x+7>2 x-3 \Rightarrow x^{2}+6 x+10>0$ | M1 |  |
| A1 | 2.1 <br> 1.1 b |  |  |
|  | $(x+3)^{2}+1>0$ or $b^{2}-4 a c=6^{2}-4 \times 1 \times 10<0$ | M1 | 2.1 |
|  | e.g. $(x+3)^{2}+1>0$ or $b^{2}-4 a c=-36$ with full reasoning <br> Hence $(x+7)(x+1)>2 x-3$ (for all $x \in \mathbb{R}) *$ | A1* | 2.4 |

(4 marks)

## Notes

M1: Attempts to multiply out and collect terms to achieve a 3TQ:

$$
(x+7)(x+1)>2 x-3 \Rightarrow x^{2}+8 x+7>2 x-3 \Rightarrow \ldots x^{2}+\ldots x+\ldots>0 \text { oe }
$$

A1: $\quad x^{2}+6 x+10>0$ oe

M1: Shows that $(x+3)^{2}+1>0$ by completing the square or shows that the discriminant of their quadratic is negative

A1*: Either

- Explains that as $(x+3)^{2} \geq 0$ for all $x \in \mathbb{R}$ then $(x+3)^{2}+1>0$ so $(x+7)(x+1)>2 x-3$
- Explains that since $x^{2}+6 x+10$ is a positive quadratic and as the discriminant is negative $(-36)$ there are no real roots hence $(x+7)(x+1)>2 x-3$ (for all $x \in \mathbb{R}$ )

Alternative proof
M1: Starts the proof with $(x+3)^{2} \geq 0$ and attempts to multiply out to achieve a 3-term quadratic
A1: $\quad x^{2}+6 x+9 \geq 0$
M1: Shows that $x^{2}+8 x+7 \geq 2 x-2$
A1*: Explains that $x^{2}+8 x+7>2 x-3$ and hence $(x+7)(x+1)>2 x-3$ (for all $x \in \mathbb{R}$ )

