5(a)(i) Image: state of the state of	Question	Scheme	Marks	AOs
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5(a)(i)			1.1b 1.1b
(b) e.g. $\frac{6}{x} + 3 = 3x^2 - 4x - 10 \Rightarrow 6 + 3x = 3x^3 - 4x^2 - 10x$ M1 $3x^3 - 4x^2 - 13x - 6 = 0$ * A1* (2) (c) $x^2 - 2x \pm$ e.g. $3x + 2\sqrt{3x^3 - 4x^2 - 13x - 6}$ M1 $x^2 - 2x - 3 (= 0) \text{ or } 3x^2 - 6x - 9 (= 0)$ A1 e.g. $(3x + 2)(x - 3)(x + 1) = 0 \Rightarrow x =$ M1 (4)	(ii)	Asymptotes: $y = 3$, $x = 0$	B1	1.1b
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			(3)	
(c) $ \begin{array}{c} x^2 - 2x \pm \dots \\ e.g. \ 3x + 2 \ 3x^3 - 4x^2 - 13x - 6 \\ \hline x^2 - 2x - 3 \ (= 0) \ \text{or} \ 3x^2 - 6x - 9 \ (= 0) \\ \hline e.g. \ (3x + 2)(x - 3)(x + 1) = 0 \Rightarrow x = \dots \\ \hline x = -1, \ x = 3 \\ \hline \end{array} $ (2) M1 M1 (4)	(b)	e.g. $\frac{6}{x} + 3 = 3x^2 - 4x - 10 \Longrightarrow 6 + 3x = 3x^3 - 4x^2 - 10x$	M1	1.1b
(c) $ \begin{array}{c c} & x^2 - 2x \pm \dots \\ & e.g. \ 3x + 2 \ 3x^3 - 4x^2 - 13x - 6 \\ \hline & x^2 - 2x - 3 \ (= 0) \ \text{or} \ 3x^2 - 6x - 9 \ (= 0) \\ \hline & e.g. \ (3x + 2)(x - 3)(x + 1) = 0 \Rightarrow x = \dots \\ \hline & x = -1, \ x = 3 \\ \hline & \text{(4)} \end{array} $		$3x^3 - 4x^2 - 13x - 6 = 0 *$	A1*	1.1b
e.g. $3x + 2 \overline{\smash{\big)}} 3x^3 - 4x^2 - 13x - 6$ M1 $x^2 - 2x - 3 \ (= 0)$ or $3x^2 - 6x - 9 \ (= 0)$ A1 e.g. $(3x + 2)(x - 3)(x + 1) = 0 \Rightarrow x =$ dM1 $x = -1, \ x = 3$ A1cso (4)			(2)	
e.g. $(3x+2)(x-3)(x+1) = 0 \Rightarrow x =$ dM1 x = -1, x = 3 A1cso (4)	(c)	e.g. $3x+2\overline{)3x^3-4x^2-13x-6}$	M1	3.1a
x = -1, x = 3 A1cso (4)		$x^2 - 2x - 3$ (=0) or $3x^2 - 6x - 9$ (=0)	A1	1.1b
(4)			dM1	1.1b
	-	x = -1, x = 3		1.1b
				marks)
Notes				

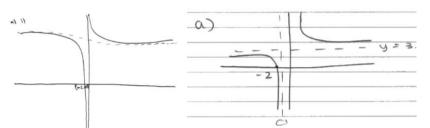
(a)(i)

M1: Either

- A correct positive reciprocal graph shape with both branches anywhere on a set of axes (ignore any dashed lines / scale and just look at the graph shape drawn)
- x = -2 is the only point of intersection of their graph with the axes. Condone labelled as (0, -2). Allow if they state the coordinates (-2, 0) next to the graph instead but not just x = -2

Condone poor curvature provided there is not an intention to draw a maximum or minimum for either of the branches. Condone where the branches approach an undrawn horizontal asymptote if the left-hand branch is slightly above the right-hand branch as long as it does not appear intentional.

A1: Fully correct graph with an intersection labelled at x = -2 on the graph (condone labelled as (0, -2)). If two horizontal or vertical asymptotes are drawn or a vertical asymptote which is not the *y*-axis then this mark cannot be scored. (unless the vertical asymptote is labelled as 0 or x = 0) Allow if they state the coordinates (-2, 0) next to the graph instead but not just x = -2


e.g. this scores M1A1

e.g. this scores M1A0

A0 e.g. this scores M1A0

g:3

e.g. this scores M1A1 e.g. this scores M1A1 (condone the vertical asymptote drawn as it is labelled as 0 (for x = 0))

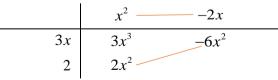
(ii) If no graph is drawn then this mark cannot be scored

- B1: y=3, x=0 cao (not $x \ne 0$) which must be correct for their graph. Check by the question but if there is a contradiction then the equations stated in (ii) of the work takes precedence. Cannot be for just stating 0 underneath the y axis and 3 on a dashed horizontal line if present.
- **(b)**
- M1: Sets $\frac{6}{x} + 3 = 3x^2 4x 10$ and rearranges to form a cubic equation. Terms do not need to

be collected or all on one side.

A1*:
$$3x^3 - 4x^2 - 13x - 6 = 0$$
 with no errors seen. There must be at least one stage of intermediate working before achieving the given answer.

e.g.
$$\frac{6}{x} + 3 = 3x^2 - 4x - 10 \Rightarrow 3x^3 - 4x^2 - 13x - 6 = 0$$
 is M1A0*
e.g. $\frac{6}{x} + 3 = 3x^2 - 4x - 10 \Rightarrow 6 + 3x = 3x^3 - 4x^2 - 10x \Rightarrow 3x^3 - 4x^2 - 13x - 6 = 0$ is M1A1*


(c) Note that proceeding to three linear factors with no working is M0A0dM0A0. A quadratic factor is required first.

M1: Attempts to algebraically divide $3x^3 - 4x^2 - 13x - 6$ by 3x + 2 or compare coefficients to achieve $(x^2 - 2x \pm ...)$ or $(x^2 \pm ...x - 3)$ (or via inspection)

Alternatively, attempts to algebraically divide $3x^3 - 4x^2 - 13x - 6$ by $x + \frac{2}{3}$ or compare

coefficients to achieve $(3x^2 - 6x \pm ...)$ or $(3x^2 \pm ...x - 9)$ (or via inspection)

May use the grid method so they must proceed as far as the diagonal for x^2 being correct and achieving $x^2 - 2x$ on the top. (They should reach the same point if dividing by $x + \frac{2}{3}$)

Any attempts to use (x+1) or (x-3) rather than (3x+2) from the given root please send to review.

- A1: $x^2 2x 3 \ (=0)$ or $3x^2 6x 9 \ (=0)$
- dM1: Attempts to solve their resulting quadratic by factorising, using the formula or completing the square. Usual rules apply for solving a quadratic by either of these methods. They cannot simply write down the roots. It is dependent on the previous method mark. Note $(3x^2 - 6x - 9) \Rightarrow (x - 3)(x + 1) \Rightarrow x = ...$ is dM0A0

A1cso: x = -1, x = 3 only (ignore any reference to $x = -\frac{2}{3}$) Condone invisible brackets if recovered or implied by further work. Withhold this mark if they reject one of the two solutions.