Questic	Scheme		Marks	AOs
7(a)	$\log_{10} a = 3.3 \text{ or} \qquad \text{e.s}$ $\log_{10} b = \frac{2.1 - 3.3}{6} (= -0.2) \qquad \text{let}$	g. $\log_{10} P = 3.3 - 0.2x$ or $\log_{10} P = 3.3 + \frac{2.1 - 3.3}{6}x$	M1	1.1b
	$a = 10^{3.3}$ or $b = 10^{-0.2}$		A1	1.1b
	$a = 10^{3.3}$ and $b = 10^{"-0.2"}$ P	$=10^{3.3-0.2x} = 10^{3.3} \times 10^{-0.2x}$	dM1	3.1a
	$P = 1995 \times 0.6310^{x}$		A1	3.3
			(4)	
(b)	(b) The concentration (in parts per million) 1 km from the chimney		B1	3.2a
			(1)	
(5 marks)				
INOTES				
 M1: Attempts an equation in <i>a</i> or <i>b</i>. Score for log₁₀ a = 3.3 or log₁₀ b = ^{2.1-3.3}/₆ (= -0.2) Condone an incorrectly evaluated gradient provided ^{2.1-3.3}/₆ o.e. was attempted (may be seen as two simultaneous equations). Alternatively, forms a correct linear equation in log₁₀ P and x. Do not penalise if base 10 is missing. May be implied by a correct unsimplified value for a or b. (which could be truncated rather than rounded for b) A1: A correct unsimplified value for a or b. This may be within the linear equation in the alternative method e.g. P = 10^{3.3} × 10^{-0.2x} dM1: A correct method to find unsimplified values for a and b. Allow use of their -0.2 found from a correct attempt at the gradient of the line. Alternatively, correctly uses laws of indices to achieve P = 10^{3.3} × 10^{-0.2^x}. It is dependent on the previous method mark. May be implied by their final correct equation. 				
A1:	Complete equation with $a = awrt$ 1995 and b	mplete equation with $a = a wrt 1995$ and $b = a wrt 0.6310$ (condone 0.631)		
(b)				
B1:	Must refer to concentration (or e.g. parts per million) and 1km o.e. Condone use of emitted for measured e.g. "concentration of smoke particles emitted 1km from the chimney" Do not accept " amount of smoke particles" or referring to when $x = 1$ (not in context)			