Questio	on Scheme	Marks	AOs	
11(a)	At $t = 0$, $V_A = 100 + 20 = 120 \Longrightarrow p = 2 \times "120"$	M1	1.1b	
	(p =) 240	A1	1.1b	
		(2)		
(b)	$e^{0.04T} =e^{-0.02T}$	M1	3.1b	
	$0.8e^{0.04T} = "4.8"e^{-0.02T}$	Alft	1.1b	
	$\dots e^{0.04T} = \dots e^{-0.02T} \implies e^{\pm 0.06T} = \dots$	dM1	3.1a	
	(T =) awrt 29.9 (months)	Alcso	1.1b	
		(4)	morks)	
(6 marks Notes				
(a)				
M1:	Attempts to find the price per gram of metal <i>A</i> at $t = 0$, and then doubles this to find the value of <i>p</i> . Can be implied by 240. An expression must be evaluated to score this mark			
A1:	240 only (withhold this mark if they find $V_B = 240$ but proceed to state <i>p</i> as a different value)			
(b)	Candidates who state that $\frac{dV_B}{dt} = "4.8"e^{-0.02T}$ can still score full marks question (they had			
	already determined that they needed to take the modulus of the gradient function)			
	May be in terms of t or T			
M1:	Attempts to set $\pm \frac{dV_A}{dt}$ equal to $\pm \frac{dV_B}{dt}$. Look for an equation of the form	1		
	$pe^{0.04T} = qe^{-0.02T}$ where <i>p</i> and <i>q</i> are constants or may be implied by further $e^{\pm 0.06T} = \dots$ (it cannot be for awrt 29.9). Do not allow $\dots Te^{0.04T} = \dots Te^{-0.02T}$	r work. e	.g.	
A1ft:	$0.8e^{0.04T} = "4.8"e^{-0.02T}$. Follow through on their positive value for <i>p</i> .			
	May be implied by further work which is not awrt 29.9.			
dM1:	Rearranges their $\frac{dV_A}{dt} = -\frac{dV_B}{dt}$ which cannot be the original functions to $re^{\pm 0.06T} = s$			
	where $r \times s > 0$			
	$\frac{dV_B}{dt} = "4.8" e^{-0.02T} \implies 0.8 e^{0.04T} = "4.8" e^{-0.02T} \text{ is allowed (see note at the start of (b).}$			
	Condone slips. It is dependent on the first method mark.			
	If they take lns of both sides first			
	e.g. $0.8e^{0.04T} = "4.8"e^{-0.02T} \implies \ln 0.8 + 0.04T = \ln"4.8" - 0.02T$ they need to $\pm 0.06T = \dots$ by adding / subtracting.	rearrang	e to	

A1cso: awrt 29.9 provided evidence of solving $0.8e^{0.04T} = 4.8e^{-0.02T}$ is seen. i.e. they cannot proceed from $e^{\pm 0.06T} = ...$ to the awrt 29.9 in one step. We must see either an expression for *t* or e.g. taking lns of both sides.

Condone
$$(T =) \frac{50 \ln 6}{3}$$
 or others in the form $(T =) a \ln b$ where *a* and *b* are rational constants e.g. $\frac{\ln 6}{0.06}$. It cannot be scored for an expression.