Questio	Scheme	Marks	AOs
12(a)	(Surface area =) $2xy + \frac{\pi x^2}{4}$	B1	1.1b
	$2xy + \frac{\pi x^2}{4} = 100 \implies y = \frac{400 - \pi x^2}{8x} = \frac{50}{x} - \frac{\pi x}{8}$	M1	3.4
	$(P=) 2x+4y+\frac{2\pi x}{4}$	B1	1.1b
	$2xy + \frac{\pi x^2}{4} = 100 \Rightarrow y = \frac{400 - \pi x^2}{8x} = \frac{50}{x} - \frac{\pi x}{8}$ $(P =) 2x + 4y + \frac{2\pi x}{4}$ $(P =) 2x + 4\left(\frac{400 - \pi x^2}{8x}\right) + \frac{2\pi x}{4}$	M1	3.4
	$P = 2x + \frac{200}{x} *$	A1*	2.1
		(5)	
(b)	$\left(\frac{\mathrm{d}P}{\mathrm{d}x}\right) = 2 - 200x^{-2}$	M1 A1	1.1b 1.1b
	$2 - 200x^{-2} = 0 \Longrightarrow x = \dots$	dM1	3.1b
	x = 10	A1	1.1b
		(4)	
(c)	$\left(\frac{d^2 P}{dx^2}\right) = 0 = 0 = 400 = x^{-3} \Rightarrow 400 = x^{-3} > 0$	M1	1.1b
	e.g. $\frac{d^2 P}{dx^2} (= 0.4) > 0$ hence minimum (perimeter)	A1	2.4
		(2)	
(d)	e.g. $y = \frac{400 - \pi \times "10"^2}{8 \times "10"}$	M1	3.4
	e.g. $y = 1.07$ (m) so yes this would be suitable	A1	2.2a
		(2)	
	(13 marks)		
Notes			
 (a) Note that different sections of the perimeter may be completed separately and brought together in a final line. Most marks will only be scored at this point – send to review if unsure. 			
	prrect expression for the surface area in terms of x and y only (may be in an equivalent rm). May be implied by their equation set equal to 100 or their rearranged form.		
1	ts their expression in x and y equal to 100 and rearranges to make y (or $2y$ or $4y$) the bject. Do not be concerned by the mechanics of their rearrangement. May be implied by rther work or can be scored for a different valid substitution into their expression for the rimeter.		
	rect expression for the perimeter in terms of x and y (may be in an equivalent form) may be implied by an expression for the perimeter in terms of x if they have stituted in for their y straight away (which may be incorrect or have been rearranged prrectly)		
	tempts to substitute their y into their perimeter to produce an expression or equation in t x . Condone invisible brackets for this mark. Condone slips provided the intention is		

just x. Co clear.

- A1*: $P = 2x + \frac{200}{x}$ cso (Condone the omission of P = on the final line if it is seen on an earlier line of working) Allow Perimeter = Do not withhold this mark if missing/invisible brackets are recovered in their working. (b)
- M1: Attempts to differentiate the given expression for *P* achieving an answer of the form $A \pm Bx^{-2}$

Condone candidates who do not achieve the given answer but their derivative differentiates to the required form to score this mark (and possibly dM1)

- A1: $2-200x^{-2}$ o.e.
- dM1: Sets their derivative of the form $A Bx^{-2}$, $A \times B > 0$ equal to 0 and rearranges to find a value for *x*. It is dependent on the previous method mark. Condone slips in their rearrangement. May proceed directly to the answer.
- A1: 10 cao (provided a correct derivative is seen) ± 10 is A0 isw if they attempt to find P
- (c) Note that attempts only evaluating the gradient either side of x = 10 is M0A0

M1: Finds $\frac{d^2 P}{dx^2}$ of the form Ax^{-3} o.e. and either considers the sign or evaluates for their positive x

- A1: Requires
 - $\left(\frac{d^2 P}{dx^2}\right) = 400x^{-3}$ (condone this mark if $\frac{d^2 y}{dx^2}$ is written or any other incorrect notation)
 - reference to $400x^{-3}$ being > 0 for x > 0, or by using either a correct calculation (0.4 o.e.), a correct numerical expression or the algebraic expression and referencing that it is > 0 for x = 10
 - correct conclusion e.g. hence min, shown, tick, QED Condone "minimum value of *x*"
- (**d**)
- M1: Either
 - substitutes their value of x into any of their equations involving y or their expression for y from part (a) (unless restarted) to find a value for y
 - uses their value of x to find their minimum value of P using the given expression for P, and then uses their x and their P to find a value for y
 - attempts to find the value of x when y = 1 (allow to be solved directly from a calculator once a three-term quadratic has been formed)
 - attempts to find the value of *P* using the given expression for *P*, their value for *x* and y = 1

Condone slips provided the intention is clear of their intended method.

A1: awrt 1.1 m and concludes would be suitable (yes is sufficient or a tick)

Note that "yes suitable because e.g. 1.07 > 0 is A0" (it had to be greater than 1)

If they find the value for x when y = 1 it requires a correct comparison of awrt 10.1 with 10 so yes suitable

If they find the value of *P* using x = 10 and y = 1 it requires a correct comparison of awrt 39.7 with 40 so yes suitable