Question	Scheme	Marks	AOs
2 (a)	$x^3 \rightarrow x^2$ or $x^2 \rightarrow x$ or $-10x \rightarrow -10$	M1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 15x^2 + 19x - 10$	A1	1.1b
		(2)	
(b)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 15(-2)^2 + 19(-2) - 10 = \dots \ (=12)$	M1	1.1b
	y - 6 = "12"(x+2)	dM1	1.1b
	y = 12x + 30	A1	1.1b
		(3)	
(5 marks)			
Notes			
(a)			

M1: Reduces the power of x by one on one of the terms (indices do not need to be processed)

- A1: $15x^2 + 19x 10$. Allow $19x^1$
- **(b)**
- M1: Attempts to find the gradient of the curve at x = -2
- dM1: Attempts to find the equation of the tangent at (-2, 6) using their gradient. If they use y = mx + c they must proceed as far as c = It is dependent on the first method mark.

A1: y = 12x + 30