Question	Scheme	Marks	AOs
14(a)(i)	(2k, -k)	B1	1.1b
(ii)	$\left(\pm 2k\right)^2 + \left(\pm k\right)^2 = \dots$	M1	1.1b
	$\sqrt{5k^2-80}$	A1	1.1b
		(3)	
(b)	$x^{2} + (k - 2x)^{2} - 4kx + 2k(k - 2x) + 80 = 0$	M1A1	3.1a
	$\Rightarrow 5x^2 - 12kx + 3k^2 + 80 = 0$		1.10
	$\left(-12k\right)^{2} - 4 \times 5 \times (3k^{2} + 80) < 0 \Longrightarrow \text{CV} = \frac{20\sqrt{21}}{21}$	M1	2.1
	$\left\{k: 4 < k < \frac{20\sqrt{21}}{21}\right\}$	M1A1	1.1b 2.5
		(5)	
(8 marks)			
Natag			

Notes

(a)

B1: (2k, -k)

M1: Attempts to use Pythagoras' theorem to find the radius² (may be implied by their radius)

A1:
$$\sqrt{5k^2-80}$$

- **(b)**
- M1: Substitutes y = k 2x into the equation for *C*, multiplies out and proceeds to a three term quadratic in *x*
- A1: $5x^2 12kx + 3k^2 + 80 = 0$ or simplified equivalent. Terms do not need to be on the same side of the equation and the = 0 may be implied. May also be implied by their values for *a*, *b* and *c* when using the discriminant.

M1: Attempts the discriminant using their a, b and c where b and c are both in terms of k and attempts to find the critical value which is greater than 4 (usual rules apply for solving a

quadratic). Do not be concerned if they find the other critical value " $-\frac{20\sqrt{21}}{21}$ " for this mark.

- M1: Attempts to find the correct inside region using their critical value which is greater than 4 so score for either $4 < k < "\frac{20\sqrt{21}}{21}"$ or $"-\frac{20\sqrt{21}}{21}" < k < "\frac{20\sqrt{21}}{21}"$. Set notation is not required for this mark.
- A1: $\left\{k: 4 < k < \frac{20\sqrt{21}}{21}\right\}$ or equivalent using set notation. Look for $\{\}$ with the correct region in terms of *k*.