Question	Scheme	Marks	AOs
15(a)	$-\frac{2}{5}$	B1	1.1b
	5	(1)	
(b)	$-\frac{2}{5} \rightarrow \frac{5}{2}$	M1	1.1b
	$\frac{-\frac{2}{5} \rightarrow \frac{5}{2}}{y - 16 = \frac{5}{2}(x - 10)}$	M1	1.1b
	5x - 2y - 18 = 0	A1	2.2a
		(3)	
(c)	$5x - 18 = 0 \Longrightarrow x = \frac{18}{5}$	M1 A1	1.1b 1.1b
		(2)	
(d)	Coordinates of R (50, 0)	B1	2.2a
	Area $=\frac{1}{2} \times 16 \times \left(50 - \frac{18}{5}\right) = \frac{1856}{5}$ (= 371.2) (units ²)	M1 A1	3.1a 1.1b
		(3)	
(e)	Curve crosses positive x axis at $x = 20$ only	B1	2.2a
	$\int \left(-\frac{3}{50}x^2 + \frac{1}{5}x + 20\right) dx = -\frac{1}{50}x^3 + \frac{1}{10}x^2 + 20x \ (+c)$	M1A1	1.1b 1.1b
	$\left(-\frac{1}{50}(20)^3 + \frac{1}{10}20^2 + 20 \times 20\right) - \left(-\frac{1}{50} \times 10^3 + \frac{1}{10}10^2 + 20 \times 10\right)$ (=90)	M1	1.1b
	$\frac{1}{2} \times 16 \times (50 - 10) - "90"$ 575	dM1	3.1a
	$\frac{\frac{1}{2} \times 16 \times (50 - 10) - "90"}{371.2} = \frac{575}{928}$	A1	2.2a
		(6)	
(15 marks)			
Notes			
(a)			
B1: $-\frac{2}{5}$ o.e.			
(b)			
M1: Finds the negative reciprocal of their gradient in (a)			
M1: Attempts the equation of the line using their changed gradient from (a) and (10, 16), with			
both coordinates substituted in correctly e.g. $y-16 = "\frac{5}{2}"(x-10)$. If they use $y = mx + c$			

they must proceed as far as c = ...

- A1: 5x-2y-18=0 or any integer multiple
- (c)

M1: Sets y=0 for their linear equation found in (b) and proceeds to find a value for x

A1:
$$x = \frac{18}{5}$$
 o.e.

(**d**)

- B1: Deduces that the x coordinate of R is 50
- M1: Attempts to find the area of triangle PQR using their x coordinate for R and their x coordinate for Q
- A1: $371.2 \text{ o.e. } (\text{units}^2)$

(e)

- B1: Deduces that the curve crosses the positive *x* axis at 20 (may be via a calculator)
- M1: Attempts to integrate the equation of the curve. Look for one index correct
- A1: $-\frac{1}{50}x^3 + \frac{1}{10}x^2 + 20x$ with or without the constant of integration
- M1: Attempts to substitute in the limits "20" and 10 and subtracts either way round
- dM1: Attempts to find the fraction of triangle *PQR* shaded. It is dependent on the previous two method marks.

A1:
$$\frac{575}{928}$$
 cao