

Figure 2

In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

Figure 2 shows a sketch of part of the curve C with equation

$$y = -\frac{3}{50}x^2 + \frac{1}{5}x + 20$$

and a sketch of the line l_1 with equation

5y + 2x = 100

(a) State the gradient of l_1

The point P(10, 16) lies on C.

The line l_2 is perpendicular to l_1 and intersects l_1 at P as shown in Figure 2.

(b) Find an equation for l_2 , giving your answer in the form ax + by + c = 0 where *a*, *b* and *c* are constants.

Given that l_2 crosses the x-axis at the point Q

(c) find the x coordinate of Q

Given also that l_1 crosses the x-axis at the point R

(d) find the exact area of triangle PQR

The shaded region, shown in Figure 2, is bounded by C, the x-axis and l_1

(e) Find, in simplest form, the fraction of triangle *PQR* that is shaded.

(6)

(1)

(3)

(2)

(3)