Quest	ion Scheme	Marks	AOs			
2(a)	A(-3,0) and $B(2.5, 22)$					
	$m = \frac{22 - 0}{2.53} = \frac{22}{5.5} \{ = 4 \}$	M1	1.1b			
	y-22 = "4"(x-2.5) or $y-0 = "4"(x-3)$					
	or $0 = "4" \times -3 + c \Rightarrow c = \dots \text{ or } 22 = "4" \times 2.5 + c \Rightarrow c = \dots$	dM1	1.1b			
	y = 4x + 12	A1	1.1b			
		(3)				
(a) Not	22 0					
M1:	M1: Attempts Gradient = $\frac{22-0}{2.5-3}$.					
	Condone 1 sign/copying slip only if a correct formula is seen or implied e.g. $\frac{y_2 - y_1}{x_2 - x_1}$					
Alternatively solves two simultaneous equations, e.g. $22 = \frac{5}{2}m + c$ and $0 = -3m + c$ to find						
	a value for m or c .					
dM1:	es $y - y_1 = m(x - x_1)$ with either $A(-3,0)$ or $B(2.5, 22)$ or e.g. $\left(-\frac{1}{4}, 11\right)$ (midpoint)					
	and their $m = "4"$ with the values correctly placed. If $y = mx + c$ is used they must proceed as far as $c =$					
	ernatively solves two simultaneous equations, e.g. $22 = \frac{5}{2}m + c$ and $0 = -3m + c$ to find					
A1:	m and c. y = 4x + 12 or y = 12 + 4x only.					
	If they use e.g. $\frac{y}{22-0} = \frac{x+3}{2.5-3}$ both M's can be scored together. Condone 1 sign/copying slip only if a correct formula is seen or implied.					
Correct answer only scores full marks.						

(b)	y < 4x + 12	B1ft	2.2a				
	$y \geqslant 2x^2 + 5x - 3$	Din	2.2a				
	$2x^2 + 5x - 3 \le y < 4x + 12$	B1ft	1.1b				
		(2)					
(5 marks)							
(b) Notes							
B1ft: Deduces one of $y < "4x + 12"$ o.e. or $y \ge 2x^2 + 5x - 3$ o.e.							
· ·	They must have an equation for l and it must be the equation of a straight line.						
-	B1ft: $y < 4x + 12$ and $y \ge 2x^2 + 5x - 3$						
o.e. e.g. $2x^2 + 5x - 3 \le y < "4x + 12"$, or $y < "4x + 12"$, $y \ge 2x^2 + 5x - 3$							
Note: For what is an otherwise correctly defined region, if there are any extra inequalities that are contradictory e.g. $-3 < x < 0$ then withhold the second B mark but note							
that $-3 \le x \le \frac{5}{2}$ or anything "wider" is fine. (Do not be concerned about strictness)							
Condone the use of "or" or " \cup " for the first B mark but $y < "4x + 12"$ or $y \ge 2x^2 + 5x - 3$							
or $y < "4x + 12" \cup y \ge 2x^2 + 5x - 3$ scores B1B0							
	must have an equation for l and it must be the equation of a straight line	2 .					
•	isw if the correct inequalities are written separately but are then combine		ectly.				
Note: Inequalities cannot be in terms of R e.g. $2x^2 + 5x - 3 \le R < "4x + 12"$							
Alternatively, some candidates may express their inequalities involving a boundary for a dashed line							
with \leq or \geq and a boundary for a solid line with $<$ or $>$.							
It may not always be clear so mark positively. e.g.							
B1ft: Deduces one of $y \le "4x + 12"$ o.e. or $y > 2x^2 + 5x - 3$ o.e.							
They must have an equation for l and it must be the equation of a straight line.							
B1ft: $y \le "4x + 12"$ and $y > 2x^2 + 5x - 3$ o.e. e.g. $2x^2 + 5x - 3 < y \le "4x + 12"$							
They must have an equation for l and it must be the equation of a straight line.							
In general look at the <u>direction</u> for the first mark to see if one inequality has the correct direction.							
Then for the second B mark they need <u>correct direction</u> and <u>consistent 'strict' or 'non-strictness'</u> with the other inequality.							
So e.g. $y < "4x+12"$, $y > 2x^2 + 5x - 3$ scores B1B0							
Note that some candidates define R as $-3 < x < \frac{5}{2}$ and this scores no marks on its own.							