Questio	n Scheme	Marks	AOs	
3(a)	$\left(\left \overrightarrow{OB}\right = \right)\sqrt{\left(\dots\right)^2 + \left(\pm 2\right)^2} \text{or} \left(\left \overrightarrow{OB}\right = \right)\sqrt{\left(\pm 6\right)^2 + \left(\dots\right)^2}$ or $\left(\left \overrightarrow{OB}\right ^2 = \right)\left(\dots\right)^2 + \left(\pm 2\right)^2 \text{or} \left(\left \overrightarrow{OB}\right ^2 = \right)\left(\pm 6\right)^2 + \left(\dots\right)^2$	M1	1.1b	
	$\left(\left \overrightarrow{OB}\right =\right)\sqrt{\left(\pm 2\right)^2 + \left(\pm 6\right)^2}$	dM1	1.1b	
	$\sqrt{40} \text{ or } 2\sqrt{10}$	A1	1.1b	
		(3)		
(b)	$\left \overrightarrow{OA} \right = \sqrt{73} \text{ or } \left \overrightarrow{AB} \right = \sqrt{29}$	B1	1.1b	
	$40 = 73 + 29 - 2\sqrt{73}\sqrt{29}\cos OAB \Rightarrow \cos OAB = \frac{73 + 29 - 40}{2\sqrt{73}\sqrt{29}}$ $\Rightarrow OAB = \cos^{-1}\left(\frac{73 + 29 - 40}{2\sqrt{73}\sqrt{29}}\right)$ or $\cos OAB = \frac{73 + 29 - 40}{2\sqrt{73}\sqrt{29}} \Rightarrow OAB = \dots$	M1	3.1a	
	$OAB = 47.6^{\circ}$	A1	1.1b	
		(3)		
(6 marks)				
Notes:				
Note that marks in (a) can be scored in (b) as long as they are not contradictory. Note that they are not asked for \overrightarrow{OB} in (a) but $ \overrightarrow{OB} $. As such, all they need are the magnitudes of the components of $ \overrightarrow{OB} $ to find $ \overrightarrow{OB} $ so you can ignore if $ \overrightarrow{OB} $ is correct or not in both parts and full marks can be awarded even if there are sign errors in their $ \overrightarrow{OB} $ if they write it as a vector.				
(a)				
M1: A	Attempts $ \overrightarrow{OB} $ or $ \overrightarrow{OB} ^2$ with one component correct and the other component non-zero.			
A	Allow $\sqrt{(\pm 2)^2 + ()^2}$ or $\sqrt{(\pm 6)^2 + ()^2}$ or $()^2 + (\pm 2)^2$ or $(\pm 6)^2 + ()^2$			
and condone e.g. -2^2 or -6^2				
But it must clearly not be an attempt at e.g. $ \overrightarrow{AB} $ e.g. $\sqrt{5^2 + 2^2}$				
dM1: C	dM1: Complete and correct method for $ \overrightarrow{OB} $ i.e. $ \overrightarrow{OB} = \sqrt{(\pm 2)^2 + (\pm 6)^2}$			
A1: v	A1: $\sqrt{40}$ or $2\sqrt{10}$ only but isw if they then use decimals.			

correct e.g. $\sin OAB = \frac{OB}{AB} = \frac{\sqrt{40}}{\sqrt{73}} \Rightarrow OAB = \sin^{-1} \frac{\sqrt{40}}{\sqrt{73}} = 47.75...$ but is an incorrect method.

Beware in (b) that assuming *OAB* is right angled can give answers that look approximately

In (b) mark the method that is most successful. Way 1: Cosine rule

- **B1:** Finds either of $|\overrightarrow{OA}| = \sqrt{73}$ or $|\overrightarrow{AB}| = \sqrt{29}$ allow for sight of these values even if not associated with a vector. They may be seen on a diagram or embedded in an attempt at the cosine rule. May be implied by decimal values (see diagram)
- cosine rule. May be implied by decimal values (see diagram)

 M1: A complete and correct method for finding angle *OAB* with their *OA*, *OB* and *AB*.

 Correct attempt at the cosine rule leading to a value for angle *OAB* using arccos.

 Following the correct use of the cosine rule, if a value for angle *OAB* is just written down
- or there is no evidence of arccos, you may need to check. Following the correct use of the cosine rule, sufficient evidence could be e.g. $\cos OAB = k \Rightarrow OAB = \cos^{-1} k = ...$
- (b) Way 2: Right angled triangles

awrt 47.6° Condone omission of degrees symbol.

(b)

A1:

A1:

- B1: Finds any of $\tan^{-1}\left(\frac{8}{3}\right) = 69.4^{\circ}$, $\tan^{-1}\left(\frac{2}{5}\right) = 21.8^{\circ}$, $\tan^{-1}\left(\frac{3}{8}\right) = 20.6^{\circ}$, $\tan^{-1}\left(\frac{5}{2}\right) = 68.2^{\circ}$ May be implied.

 M1: A complete and correct method for finding angle OAB.

 e.g. attempts $\tan^{-1}\left(\frac{5}{2}\right) = \tan^{-1}\left(\frac{3}{2}\right)$ or $\tan^{-1}\left(\frac{8}{2}\right) = \tan^{-1}\left(\frac{2}{2}\right)$ or $20^{\circ} = \tan^{-1}\left(\frac{3}{2}\right) = \tan^{-1}\left(\frac{2}{2}\right)$
- e.g. attempts $\tan^{-1}\left(\frac{5}{2}\right) \tan^{-1}\left(\frac{3}{8}\right)$ or $\tan^{-1}\left(\frac{8}{3}\right) \tan^{-1}\left(\frac{2}{5}\right)$ or $90^{\circ} \tan^{-1}\left(\frac{3}{8}\right) \tan^{-1}\left(\frac{2}{5}\right)$ leading to a value for angle OAB.

 A1: awrt 47.6° Condone omission of degrees symbol.

 (b) Way 3: Scalar product
- B1: Finds $\overrightarrow{AO} \cdot \overrightarrow{AB} = \begin{pmatrix} -3 \\ 8 \end{pmatrix} \cdot \begin{pmatrix} -5 \\ 2 \end{pmatrix} = 15 + 16 = 31$
- Allow $\pm \overrightarrow{AO} \cdot \pm \overrightarrow{AB} = \pm 31$ M1: A complete and correct method for finding angle *OAB* with their *OA*, *OB* and *AB*.
 - M1: A complete and correct method for finding angle OAB with their OA, OB and AB. e.g. $31 = \left| \overrightarrow{AO} \right| \left| \overrightarrow{AB} \right| \cos OAB = \sqrt{3^2 + 8^2} \sqrt{5^2 + 2^2} \cos OAB \Rightarrow \cos OAB = \frac{31}{\sqrt{73}\sqrt{29}} \Rightarrow OAB = ...$
 - If e.g. $\overrightarrow{OA} \cdot \overrightarrow{AB}$ is attempted then they need to find e.g. $OAB = 180^{\circ} \cos^{-1} \frac{-31}{\sqrt{73}\sqrt{29}}$ Following the correct use of the scalar product, if a value for angle OAB is just written down
 - or there is no evidence of arccos, you may need to check.
 awrt 47.6° Condone omission of degrees symbol.

For reference:

