Question	Scheme	Marks	AOs
4(a)(i)	$x^2 + y^2 + 10x - 4y + 1 = 0$		
	$(x+5)^2 + (y-2)^2$	M1	1.1b
	Centre (-5, 2)	A1	1.1b
(a)(ii)	Radius is $\sqrt{28}$	A1	1.1b
		(3)	
(b)	$2+2\sqrt{7}$ or $2-2\sqrt{7}$ seen	B1	2.2a
	$2 - 2\sqrt{7} < k < 2 + 2\sqrt{7}$	M1	1.1b
	$\left\{ k: 2 - 2\sqrt{7} < k < 2 + 2\sqrt{7} \right\}$ oe	A1	2.5
		(3)	
(6 marks)			
Notes:			
Condone mislabelled parts e.g. labelled as (a), (b) and (c) not (a)(i), (a)(ii), (b) M1: Attempts to complete the square by halving both x and y terms. Award for sight of $(x \pm 5)^2 \dots (y \pm 2)^2$ or $(x \pm 5)^2$ and $(y \pm 2)^2$ seen separately. May be implied by a centre of $(\pm 5, \pm 2)$ A1: Correct coordinates $(-5, 2)$ or e.g. $x = -5, y = 2$ and condone e.g. $-5, 2$ A1: $\sqrt{28}$ (or $2\sqrt{7}$) (b) B1: $2+2\sqrt{7}$ or $2-2\sqrt{7}$ seen. Accept $\sqrt{28}$ for $2\sqrt{7}$ throughout this question. M1: " $2-2\sqrt{7}$ " $< k < "2+2\sqrt{7}$ " Selects the inside interval for their endpoints which must come from a correct method condoning slips. Condone use of y for k . May be seen separately e.g. " $2-2\sqrt{7}$ " $< k < "2+2\sqrt{7}$ " Condone e.g. " $2-\sqrt{28}$ " $< k < "2+\sqrt{28}$ " and allow inexact e.g. " -3.291 " $< k < "7.291$ " An incorrect method would include e.g. $5-2\sqrt{7} < k < 5+2\sqrt{7}$ ie using the x coordinate of the centre rather than the y coordinate. A1: Correct answer in exact form in set notation or interval notation in terms of k . Allow: $\{k:2-2\sqrt{7} < k < 2+2\sqrt{7}\}$ or $\{k:2-2\sqrt{7} < k\} \cap \{k:2-2\sqrt{7}, 2+2\sqrt{7}\}$ or $\{2-2\sqrt{7} < k\} \cap \{k:2-2\sqrt{7}, 2+2\sqrt{7}\}$ or $\{2-2\sqrt{7} < k\} \cap \{k:2-2\sqrt{7}, 2+2\sqrt{7}\}$ or $\{2-2\sqrt{7} < k\} \cup \{k:2-2\sqrt{7}\}$ and $\{k:k<2+2\sqrt{7}\}$ but not $\{2-2\sqrt{7} < k\} \cup \{k<2+2\sqrt{7}\}$ and not $[2-2\sqrt{7}, 2+2\sqrt{7}]$ and not $[2-2\sqrt{7}, 2+2\sqrt{7}]$ and not			

 $x^{2}+10x+(k^{2}-4k+1)=0$, $10^{2}-4(k^{2}-4k+1)>0$, $24+4k-k^{2}=0$

Alternative 1 (substitutes y = k into the given or their circle equation and uses $b^2 - 4ac = 0$

Condone e.g. " $2 - \sqrt{28}$ " $\leq k \leq$ " $2 + \sqrt{28}$ " and allow inexact e.g. " $-3.\overline{291}$..." < k < "7.291..." If when finding their endpoints they make a sign error and obtain e.g. $k^2 - 4k - 24 > 0$ and

then choose the outside region, this scores M1 but it must be consistent with their inequality. Correct answer in exact form in set notation or interval notation in terms of k. **A1:** Allow: $\{k: 2-2\sqrt{7} < k < 2+2\sqrt{7}\}\$ or $\{k: 2-2\sqrt{7} < k\} \cap \{k: k < 2+2\sqrt{7}\}\$ or $\{2-2\sqrt{7} < k < 2+2\sqrt{7}\}\$ or $\{2-2\sqrt{7} < k\} \cap \{k < 2+2\sqrt{7}\}\$ or $\{2-2\sqrt{7}, 2+2\sqrt{7}\}$ or

$$\left\{k: 2-2\sqrt{7} < k \cap k < 2+2\sqrt{7}\right\} \text{ or } \left\{k: 2-2\sqrt{7} < k\right\} \text{ and } \left\{k: k < 2+2\sqrt{7}\right\} \text{ but not}$$

$$\left\{2-2\sqrt{7} < k\right\} \cup \left\{k < 2+2\sqrt{7}\right\} \text{ and not } \left[2-2\sqrt{7}, \ 2+2\sqrt{7}\right] \text{ and not}$$

$$\left\{2-2\sqrt{7} \leqslant k \leqslant 2+2\sqrt{7}\right\}$$
(b) Alternative 2 (substitutes $x = "-5"$ into the given or their circle equation and solves for y)

 $25 + v^2 - 50 - 4v + 1 - 0 \Rightarrow v^2 - 4v - 24 = 0 \Rightarrow v =$

$2+2\sqrt{7}$ or $2-2\sqrt{7}$ seen. Accept $\sqrt{28}$ for $2\sqrt{7}$ throughout this question. **B1**: $"2 - 2\sqrt{7}" < k < "2 + 2\sqrt{7}"$ M1:

Selects the inside interval for their endpoints which must come from a correct method condoning slips. Condone use of y for k. May be seen separately e.g. " $2-2\sqrt{7}$ " < k, $k < 2+2\sqrt{7}$ "

Condone e.g. " $2 - \sqrt{28}$ " $\leq k \leq$ " $2 + \sqrt{28}$ " and allow inexact e.g. "-3.291..." < k < "7.291..." Correct answer in exact form in set notation or interval notation in terms of k.

A1:

 $\left\{2 - 2\sqrt{7} \leqslant k \leqslant 2 + 2\sqrt{7}\right\}$

Scores in the same way following e.g.

(b)

or $b^2 - 4ac > 0$)

Scores in the same way following e.g.

Allow: $\{k: 2-2\sqrt{7} < k < 2+2\sqrt{7}\}\$ or $\{k: 2-2\sqrt{7} < k\} \cap \{k: k < 2+2\sqrt{7}\}\$ or $\{2-2\sqrt{7} < k < 2+2\sqrt{7}\}\ \text{or}\ \{2-2\sqrt{7} < k\} \cap \{k < 2+2\sqrt{7}\}\ \text{or}\ (2-2\sqrt{7},\ 2+2\sqrt{7})\ \text{or}$ $\{k: 2-2\sqrt{7} < k \cap k < 2+2\sqrt{7}\}\$ or $\{k: 2-2\sqrt{7} < k\}$ and $\{k: k < 2+2\sqrt{7}\}$ but **not** $\{2-2\sqrt{7} < k\} \cup \{k < 2+2\sqrt{7}\}\$ and **not** $[2-2\sqrt{7}, 2+2\sqrt{7}]$ and **not**