Questi	on Scheme	Marks	AOs
8	$\sin^2 3x = 4\cos^2 3x$		
	$\sin^2 3x = 4\cos^2 3x \Longrightarrow \tan^2 3x = 4$		
	$\sin^2 3x = 4\cos^2 3x \Rightarrow \sin^2 3x = 4(1-\sin^2 3x)$	D1	1.2
	$\sin 3x - 4\cos 3x \rightarrow \sin 3x - 4(1-\sin 3x)$	B1	1.2
	$\sin^2 3x = 4\cos^2 3x \Rightarrow 1 - \cos^2 3x = 4\cos^2 3x$		
	$\tan^2 3x = 4 \text{ or } \sin^2 3x = \frac{4}{5} \text{ or } \cos^2 3x = \frac{1}{5}$	M1	1.1b
	$\tan^2 3x = 4 \Rightarrow \tan 3x = \sqrt{4} \Rightarrow 3x = \tan^{-1} \sqrt{4} \Rightarrow x = \frac{1}{3} \tan^{-1} \sqrt{4} = \dots$		
	Or $\sin^2 3x = \frac{4}{5} \Rightarrow \sin 3x = \sqrt{\frac{4}{5}} \Rightarrow 3x = \sin^{-1} \sqrt{\frac{4}{5}} \Rightarrow x = \frac{1}{3}\sin^{-1} \sqrt{\frac{4}{5}} = \dots$ Or	dM1	1.1b
	$\cos^2 3x = \frac{1}{5} \Rightarrow \cos 3x = \sqrt{\frac{1}{5}} \Rightarrow 3x = \cos^{-1} \sqrt{\frac{1}{5}} \Rightarrow x = \frac{1}{3} \cos^{-1} \sqrt{\frac{1}{5}} = \dots$		
	One of awrt 21.1°, 38.9°, 81.1°	A1	1.1b
	Awrt 21.1°, 38.9°, 81.1°	A1	2.2a
		(5)	
(5 marks)			
Notes:			
Allow to work in any variable e.g. θ for all marks.			
B1:	Accurately recalls and applies either $\frac{\sin^2 3x}{\cos^2 3x} = \tan^2 3x$ or $\cos^2 3x = 1 - \sin^2 3x$ or		
	$\sin^2 3x = 1 - \cos^2 3x$ to the given equation.		
	fote that e.g. $\sin^2 3x = 4\cos^2 3x \Rightarrow \sin^2 3x = 4 \times 1 - \sin^2 3x$ scores B0 unless the missing rackets are recovered.		
M1:	Reaches $\tan^2 3x = \alpha$ or $\sin^2 3x = \beta$ or $\cos^2 3x = \gamma$ where $\alpha > 0$, $0 < \beta < 1$, $0 < \gamma < 1$		
	Condone the use of $\pm \sin^2 \theta \pm \cos^2 \theta = \pm 1$ for this mark or e.g. a slip in losing the 3 from $3x$		
	r e.g. $1 - \cos^2 3x = 4\cos^2 3x \Rightarrow 3\cos^2 3x = 1 \Rightarrow \cos^2 3x = \frac{1}{3}$ but the process should be		
	essentially correct. May be implied by e.g. $5\cos^2 3x = 1 \Rightarrow \cos 3x = \sqrt{\frac{1}{5}}$.		
dM1:	ses the correct order of operations to find a value for <i>x</i> , i.e., attempts to take the square root, verse sin/cos/tan as appropriate and attempts to divide by 3 ou may need to check.		
	fote that e.g. $\sin^2 3x = \frac{4}{5} \Rightarrow \sin 3x = \sqrt{\frac{4}{5}} \Rightarrow 3x = 23.6 \Rightarrow x = 7.86$ scores M1 but		
	g. $\sin^2 3x = \frac{4}{5} \Rightarrow 3x = 23.6 \Rightarrow x = 7.86$ scores M0		
A1:	One of awrt 21.1°, 38.9°, 81.1° (Must be in degrees)		

All three of awrt 21.1°, 38.9°, 81.1° (Must be in degrees) and no others between 0° and

A less likely but correct alternative is to use "double" angles e.g.

$$\sin^2 3x = 4\cos^2 3x$$

$$\Rightarrow \frac{1-\cos 6x}{2} = 4\left(\frac{1+\cos 6x}{2}\right)$$

$$\Rightarrow \cos 6x = -\frac{3}{5}$$

$$\Rightarrow x = \frac{1}{6}\cos^{-1}\left(-\frac{3}{5}\right)$$
One of awrt 21.1°, 38.9°, 81.1°
Awrt 21.1°, 38.9°, 81.1°

equivalent to the given equation.
M1: Reaches
$$\cos 6x = \alpha$$
 where $|\alpha| < 1$

attempts to divide by 6

degrees)

B1:

Condone the use of $\sin^2 3x = \frac{\pm 1 \pm \cos 6x}{2}$ and $\cos^2 3x = \frac{\pm 1 \pm \cos 6x}{2}$ for this mark but the process should be essentially correct.

1M1: Uses the correct order of operations to find a value for x, i.e., takes inverse \cos and

Accurately recalls and applies $\sin^2 3x = \frac{1 - \cos 6x}{2}$ and $\cos^2 3x = \frac{1 + \cos 6x}{2}$ or

- You may need to check.

 A1: One of awrt 21.1°, 38.9°, 81.1° (Must be in degrees)
- A1: One of awrt 21.1, 38.9, 81.1 (Must be in degrees)

 A1: All three of awrt 21.1°, 38.9°, 81.1° and no others between 0° and 90° (Must be in