In Q11 there are a lot of parts so mark positively and condone mislabelling if they are clearly doing the right thing for a particular part.

Question	Scheme	Marks	AOs
11(a)	$(V =)\frac{1}{2}\pi r^2 l = 90000\pi$	B1	1.1b
	$(A =) \pi r^2 + \pi r l$	B1	1.1b
	$l = \frac{180000}{r^2} \Rightarrow A = \pi r^2 + \pi r \left(\frac{180000}{r^2}\right)$ or e.g. $\pi r l = \frac{180000 \pi}{r} \Rightarrow A = \pi r^2 + \frac{180000 \pi}{r}$ or e.g. $r l = \frac{180000}{r} \Rightarrow A = \pi r^2 + \pi \left(\frac{180000}{r}\right)$	M1	1.1b
	$(A =) \pi r^2 + \frac{180000\pi}{r} *$	A1*	1.1b
		(4)	

(a) Condone use of e.g.
$$h$$
 for l or e.g. R for r as long as the intention is clear.

Correct equation seen for volume:

B1:

B1:

of:

$$\frac{1}{2}r^2l = 90\,000$$
 or $r^2l = 180\,000$ or $r^2l = 2(90\,000)$ May not be implied by subsequent work.

 $\pi r^2 \left[\frac{1}{2}\pi r^2 + \frac{1}{2}\pi r^2 \right] \pi \left(\frac{d}{2} \right)^2$

Correct expression for the area stated in terms of the radius (or diameter) and length:

e.g. $(A =)\pi r^2 + \pi rl$ but allow equivalent correct expression so that the "ends" are any one

 $\frac{1}{2}\pi r^2 l = 90\,000\,\pi \text{ or } \pi r^2 l = 180\,000\,\pi \text{ or } \pi r^2 l = 2\,(90\,000\,\pi)$

 $\frac{2\pi r^2}{2}$

And the curved surface area is any one of:

$$\pi rl$$
 $\frac{1}{2}(2\pi rl)$ $\frac{\pi ld}{2}$

These may be seen separately before being combined at the end.

"A =" for this mark. Cannot be implied. Condone a missing

Rearranges their $\frac{1}{2}\pi r^2 l = 90000\pi$ to e.g. l = ... or $\pi r l = ...$ or r l = ... and substitutes in for **M1**:

e.g. l or πrl or rl in their formula for the area which must have at least 2 terms, all of which must be dimensionally correct, to obtain an expression in terms of r only. This mark cannot be implied and substitution needs to be shown, not just the printed answer written down. This may be seen combined at the end.

A1*: cso. The "A =" does not have to be seen. Ignore any units given. All previous marks must be scored. Isw once a correct answer is reached from correct work.

(b	$\frac{1}{2}$ $\frac{180000\pi}{180000}$ $\frac{dA}{dA}$	M1	1.1b			
	$A = \pi r^2 + \frac{180000\pi}{r} \Rightarrow \left(\frac{\mathrm{d}A}{\mathrm{d}r}\right) = 2\pi r - 180000\pi r^{-2}$	A1	1.1b			
	$\frac{\mathrm{d}A}{\mathrm{d}r} = 0 \Rightarrow r^3 = \frac{180000\pi}{2\pi}$	dM1	1.1b			
	$\Rightarrow r = \sqrt[3]{90000} \text{or} r = \text{awrt } 44.8 \text{ (cm)}$	A1	1.1b			
		(4)				
(c)	Finds $\frac{1}{dr^2} = 2\pi + 360000\pi r^{-3}$ at $r = 44.8$	M1	3.1b			
	$\frac{d^2 A}{dr^2} = (+18.8) > 0 \text{ hence minimum (value of } A)^*$	A1	2.4			
		(2)				
(b)	100,000					
M1: Attempts to differentiate $A = \pi r^2 + \frac{180000\pi}{r}$ with respect to r.						
Award for $\left(\frac{dA}{dr}\right) = \dots r \pm \dots r^{-2}$						
A1:	$\left\{\frac{\mathrm{d}A}{\mathrm{d}r}\right\} = 2\pi r - 180000\pi r^{-2} \text{ Condone } \frac{\mathrm{d}A}{\mathrm{d}r} \text{ appearing as } \frac{\mathrm{d}y}{\mathrm{d}x} \text{ or being absent.}$					
dM1:	1: Sets their $\frac{dA}{dr}$ 0 where "" could be an inequality and arrives at a value for r via					
	$r^{\pm 3}k, k > 0$ where "" could be an inequality.					
	May be implied by e.g. $r = \sqrt[3]{}$ or $r = \sqrt[-3]{}$ where "" > 0					
	They cannot just go from e.g. $2\pi r - 180000\pi r^{-2} = 0$ straight to a value for r .					
A1:	Awrt 44.8 or $\sqrt[3]{90000}$ Condone omission of units or use of incorrect units.					
	Do not allow e.g. ± 44.8 or e.g. $r > 44.8$					
(c)						
M1:	Attempts to find $\frac{d^2 A}{dr^2}$ following on from their $\frac{dA}{dr}$ which includes $r \to cc$	onstant an	d			
	$r^{-2} \rightarrowr^{-3}$ and attempts to find its value with their r (may need to check) of sign with reference to their r . Condone slips in substituting as long as the integration of the sign with reference to their r .					
Alt may consider the value of $\frac{dA}{dr}$ either side e.g. $\left(\frac{dA}{dr}\right)_{x=44} = -15.6, \left(\frac{dA}{dr}\right)_{x=45} = 3.49$						
or ma	y consider the value of <i>A</i> either side e.g. $(A)_{x=44.8} = 18927$, $(A)_{x=44} = 18934$, ($A\big)_{x=45}=18$	3928			
A1: Fully correct work and conclusion. This requires						
• correct work in (b) with the correct value of r						
• a correct $\frac{d^2 A}{dr^2}$						
• obtaining $\frac{d^2 A}{dr^2}$ = awrt 19 (or 6π) (or truncated as 18) which is > 0 or e.g. $\frac{d^2 A}{dr^2}$ > 0 as $r > 0$						

ďγ a conclusion that it is the minimum For the alt it would be for correct calculations

e.g. gradient goes from negative to positive so minimum

e.g. A is larger either side of 44.8 so minimum

(d)	Substitutes $r = 44.8$ into $A = \pi r^2 + \frac{180000\pi}{r}$ {= awrt 18900} Or may be seen embedded in a (possibly incorrect) conversion e.g. substitutes $r = 44.8$ into $\frac{30}{100^2} \left(\pi r^2 + \frac{180000\pi}{r} \right)$ {= awrt 56.8}	M1	3.4		
	Minimum cost = £56.78	A1	1.1b		
		(2)			
(e)	Accept any sensible assumption, e.g., • The exact amount of metal required can be bought. • No metal goes to waste. • The trough can be made as a perfect (semicircular) cylinder. • It's possible to cut accurately Condone • Need to buy a fixed amount • You can't buy the exact amount of metal • There will be wastage due to the shape • No extra amount of metal is needed • There will be no errors when cutting the metal • The trough will be fully smooth/have no imperfections Do not allow e.g. • The thickness of the sheet is negligible	B1	3.5a		
		(1)	narks)		
(d)		(10 11	Tar Ksj		
M1:	For a correct method of finding A or $\frac{30A}{100^2}$ or e.g. 30A from their solution to $\frac{dA}{dr} = 0$				
	May be implied by e.g. 18928				
1	Do not accept attempts using negative values of r . Minimum cost = £56.78 or £56.79 including units.				
(e) B1:					