Question	Scheme	Marks	AOs				
15(a)	n^3+4n						
	Attempts $n^3 + 4n$ for any 2 natural numbers.	M1	1.1b				
	$1^3 + 4 \times 1 = 5$ prime and e.g. $2^3 + 4 \times 2 = 16$ not prime	A1	2.4				
	∴ sometimes true.						
	Condone the use of <i>n</i> for e.g. <i>k</i> for both marks.	(2)					
	All methods require attempting $n^3 + 4n$ when $n = 1$ for full marks.						
Way 1:							
M1: Attempts $n^3 + 4n$ for any 2 natural numbers.							
A1: Requires:							
•	• obtains $n^3 + 4n = 5$ when $n = 1$ and states "prime" or "true" or \checkmark						
• correct evaluation for any other natural number and states "not prime" or "composite" or "not true" or *							
• states "sometimes true"							
You can ign	ore any other incorrectly evaluated examples or e.g. use of negative num	nbers as lor	ng as				
	ions are met.						
Way 2 (factorisation):							
M1: Attempts to factorise $n^3 + 4n = n(n^2 + 4)$							
Allo	w for $n^3 + 4n = n(n^2 +)$ or $n^3 + 4n = n(+4)$						
A1: Requ	quires:						
•	uses $n = 1$ and obtains $n^3 + 4n = 5$ and states "prime" or "true"						
•	correct factorisation and states $n^3 + 4n = n(n^2 + 4)$ is "composite" or	"not prime	e" or				
	"not true" (when $n > 1$)						
•	states "sometimes true"						
Way 3 (odd/even):							
M1: Attempts to substitute $n = 2k$ oe or $n = 2k + 1$ oe A1: Requires:							
• uses $n = 1$ and obtains $n^3 + 4n = 5$. Here the value for $n = 1$ might be found using							
	k = 1 for $n = 2k - 1$ or $k = 0$ for $n = 2k + 1$ and states "prime" or "true"						
•	correctly factorises any one correct form for odd or even e.g. $8k^3 + 8k$		-1)				
•	and concludes "not prime" or "composite" or "not true" (only one for states "sometimes true"	`	/				

(b)		$n^3 + 5n$				
		$n^3 + 5n = n\left(n^2 + 5\right)$	M1	3.1a		
		Since $1^3 + 5 \times 1 = 6$, $n^3 + 5n$ is not prime for $n = 1$				
		For all other n , $n^3 + 5n = n(n^2 + 5)$ is not prime as it is the product of	A1	2.4		
		two other numbers not equal to 1. Hence never true.				
		nence never true.	(2)			
	'			narks)		
Notes: Condone the use of <i>n</i> for e.g. <i>k</i> for both marks.						
Way 1 (Factorisation):						
M1:	Atter	mpts to factorise $n^3 + 5n = n(n^2 + 5)$				
	Allov	$n^3 + 5n = n(n^2 +)$ or $n^3 + 5n = n(+ 5)$				
A1:	1: Requires:					
	• Correct factorisation $n^3 + 5n = n(n^2 + 5)$					
	• Substitution of $n = 1$: $1^3 + 5 \times 1 = 6$					
		or states $n^3 + 5n \neq 2$ oe e.g. $n^3 + 5n > 2$ oe "Never true"				
Way 2	(Odd	l/Even):				
M1: Attempts to substitute $n = 2k$ and either $n = 2k + 1$ or $n = 2k - 1$ oe						
AI:	A1: Requires:Correctly factorising both even and odd forms					
		e.g. $8k^3 + 10k = 2k(4k^2 + 5)$ and				
		e.g. $(2k+1)^3 + 5(2k+1) = (2k+1)((2k+1)^2 + 5)$ or e.g. $2(2k+1)(2k+1)$	$k^2 + 2k + 3$)		
		(in this part both cases are needed)				
	•	• Substitution of $n = 1 : 1^3 + 5 \times 1 = 6$, or e.g. $k = 1$ for $n = 2k - 1$ or $k = 0$ for $n = 2k + 1$				
		or states $n^3 + 5n \neq 2$ oe e.g. $n^3 + 5n > 2$ oe				
		e.g. $2k(4k^2+5)$ and $2(2k+1)(2k^2+2k+3)$ are > 2 or $\neq 2$				
Wav 3	• hh())	"Never true" I/Even via logic):				
	`	iders $n^3 + 5n$ with "odds" and "evens" e.g.				
		s odd then $n^3 + 5n = \text{odd} + \text{odd} = \text{even}$				
	or e.g	g. $n^3 + 5n = n(n^2 + 5) = \text{odd}(\text{odd} + \text{odd}) = \text{odd} \times \text{even} = \text{even}$				
	If <i>n</i> is even then $n^3 + 5n = \text{even} + \text{even} = \text{even}$					
		g. $n^3 + 5n = n(n^2 + 5) = \text{even}(\text{even} + \text{odd}) = \text{even} \times \text{odd} = \text{even}$				
A1:	Requ	ires: Fully correct argument for both odds and evens				
	•		algebra or	e.g.		
		$n \text{ odd means } n^3 = \text{odd} \times \text{odd} \times \text{odd} = \text{odd}$	C			
	•	When $n = 1$, $n^3 + 5n = 6$ so $n^3 + 5n \neq 2$				
	•	"Never true"				