13. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.	
The growth of a particular tree is monitored over a period of time.	
The height, h metres, of this tree, t years after it was planted, is modelled by the equation	
$h = 31 - Ae^{-kt}$	
where A and k are positive constants.	
Given that	
• exactly 10 years after it was planted, the height of the tree was 6 m	
• exactly 20 years after it was planted, the height of the tree was 11 m	
(a) find a complete equation for <i>h</i> in terms of <i>t</i> , giving the value of each of <i>A</i> and <i>k</i> to 3 significant figures.	
	(4)
Use the equation of the model to answer parts (b), (c) and (d).	
According to the model, there is a limit to the height to which this tree can grow.	
(b) Deduce this limit.	(1)
(a) (i) Find the initial height of the tree	(1)
(c) (i) Find the initial height of the tree.	
(ii) Hence explain whether this is a suitable model for the early growth of the tree.	(2)
(d) (i) Find $\frac{dh}{dt}$, giving your answer in simplest form.	
\mathbf{u}	(2)
(ii) Hence find the value of <i>t</i> for which the height of the tree is increasing at a rate of 30 cm per year.	
of 50 cm per year.	(3)