Qu	Scheme	Marks	AO
5 (a)	P(X = 4) = P(X = 2) so $P(X = 4) = 0.35$	M1	2.1
	P(X = 1) = P(X = 3) and $P(X = 1) + P(X = 3) = 1 - 0.7$		
	So x 1 2 3 4	A1	1.1b
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
		(2)	
(b)	Let A = number of spins that land on 4 $A \sim B(60, "0.35")$	B1ft	3.3
	$[P(A > 30) =] 1 - P(A \leq 30)$	M1	3.4
	= 1 - 0.99411 = awrt 0.00589	A1 (2)	1.1b
(c)	12	(3)	
(0)	$Y - X \leq 4 \implies \frac{12}{X} - X \leq 4 \text{ or } 12 - X^2 \leq 4X \text{ (since } X > 0) \text{ o.e.}$	M1	3.1a
	i.e. $0 \leq X^2 + 4X - 12 \implies 0 \leq (X+6)(X-2)$ so $X \geq 2$	M1	1.1b
	$P(Y - X \le 4) = P(X \ge 2) = 0.35 + 0.15 + 0.35 = 0.85$	A1	3.2a
		(3)	
		(8 marks)	
	$\frac{\text{Notes}}{(X - 4)}$		
(a)	M1 for using the given information to obtain $P(X = 4)$ Award for statement $P(X = 4) = P(X = 2)$ or writing $P(X = 4) = 0.35$		
	A1 for acting fully compat distribution (any form that algority identifies mucha)		
	e.g. can be list $P(X = 1) = 0.15$, $P(X = 3) =$ etc or as a probability function [Condone missing $P(X = 2)$ as this is given in OP] $P(X = x) = \begin{cases} 0.15 & x = 1,3 \\ 0.35 & x = 2,4 \end{cases}$		
	or as a probability function $P(X = x) =$ [Condone missing $P(X = 2)$ as this is given in QP]	$\begin{cases} 0.35 & x = \end{cases}$	= 2, 4
	[Condone missing $\Gamma(X = 2)$ as this is given in QI]		
(b)	B1 for selecting a suitable model, sight of B(60, their 0.35) o.e. in words		
	f.t. their $P(X = 4)$ from part (a).		
	Can be implied by $P(A \le 30) = awrt \ 0.9941$ or final answer = awrt 0.00589 M1 for using their model and interpreting "more than half"		
	Need to see $1 - P(A \le 30)$. Can be implied by awrt 0.00589		
	Can ignore incorrect LHS such as $P(A \ge 30)$		
	A1 for awrt 0.00589		
(c)	1 st M1 for translating the prob. problem into a <u>correct</u> mathematical inequality		
	Just an inequality in 1 variable. May be inside a probability statement.		
ALT	Table of values:X1234or values of		
	$\begin{array}{ c c c c c c c c } Y & 12 & 6 & 4 & 3 \\ \hline Y - X = 11, \\ \end{array}$		
	2^{nd} M1 for solving the inequality leading to a range of values, a		-
ALT	May be a quadratic or cubic but must lead to a set of value Table or values: They must state clearly which values are requir		-X
	Both Ms can be implied by a correct answer (or correct ft of their distb'n)		
	A1 for interpreting the inequality and solving the problem i.e		,