Question	Scheme	Marks	AOs
8(a)	Multiply out and differentiate <i>wrt</i> to time (or use of product rule i.e. must have two terms with correct structure)	M1	1.1a
	$v = 2t^3 - 3t^2 + t$	Al	1.1b
	$2t^3 - 3t^2 + t = 0$ and solve: $t(2t - 1)(t - 1) = 0$	DM 1	1.1b
	$t = 0$ or $t = \frac{1}{2}$ or $t = 1$; any two	A1	1.1b
	All three	Al	1.1b
		(5)	
(b)	Find x when $t = 0, \frac{1}{2}, 1 \text{ and } 2: (0, \frac{1}{32}, 0, 2)$	M1	2.1
	Distance = $\frac{1}{32} + \frac{1}{32} + 2$	M1	2.1
	$2\frac{1}{16}$ (m) of or 2.06 or better	A1	1.1b
		(3)	
(c)	$x = \frac{1}{2}t^2(t-1)^2$	M1	3.1a
	$\frac{1}{2}$ perfect square so $x \ge 0$ i.e. never negative	A1 cso	2.4
		(2)	
	·	(10 marks)	

Notes:

- **(a)**
- M1: Must have 3 terms and at least two powers going down by 1
- A1: A correct expression
- **DM1:** Dependent on first M, for equating to zero and attempting to solve a <u>cubic</u>
- A1: Any two of the three values (Two correct answers can imply a correct method)
- A1: The third value

(b)

M1: For attempting to find the values of x (at least two) at their t values found in (a) or at t=2 or equivalent e.g. they may integrate their v and sub in at least two of their t values

M1: Using a correct strategy to combine their distances (must have at least 3 distances)

A1: $2\frac{1}{16}$ (m) or 2.06 or better

(c)

M1: Identify strategy to solve the problem such as:

- (i) writing x as $\frac{1}{2}$ × perfect square
- (ii) or using *x* values identified in (b).
- (iii) or using calculus i.e. identifying min points on x-t graph.
- (iv) or using x-t graph.

A1 cso : Fully correct explanation to show that $x \ge 0$ i.e. never negative