Question	Scheme	Marks	AOs	Notes
3 (a)	$v = 12 + 4t - t^2 = 0$ and solving	M1	3.1a	Equating v to 0 and solving the quadratic If no evidence of solving, and at least one answer wrong, M0
	t = 6 (or - 2)	A1	1.1b	6 but allow -2 as well at this stage
	Differentiate v wrt t	M1	1.1a	For differentiation (both powers decreasing by 1)
	$(a = \frac{\mathrm{d}v}{\mathrm{d}t} =) 4 - 2t$	A1	1.1b	Cao; only need RHS
	When $t = 6$, $a = -8$; Magnitude is 8 (m s ⁻²)	A1	1.1b	Substitute in $t = 6$ and get 8 (m s ⁻²) as the answer. Must be positive. (A0 if two answers given)
		(5)		
(b)	Integrate v wrt t	M1	3.1a	For integration (at least two powers increasing by 1)
	$(s=)12t+2t^{2}-\frac{1}{3}t^{3}(+C)$	A1	1.1b	Correct expression (ignore <i>C</i>) only need RHS Must be used in part (b)
	$t = 3 \implies$ distance = 45 (m)	A1	1.1b	Correct distance. Ignore units
		(3)		
(8 marks)			narks)	