Que	estion	Scheme	Marks	AOs	
3	(a)	(i) Equation of motion for <i>P</i>	M1	3.3	
		T - 2mg = 2ma	A1	1.1b	
		(ii) Equation of motion for Q	M1	3.3	
		5mg - T = 5ma	A1	1.1b	
		N.B. (allow (- <i>a</i>) in both equations)	(4)		
3	(b)	Solve equations for a or use whole system equation and solve for a	M1	3.4	
		$a = \frac{3g}{7} = 4.2$	A1	1.1b	
		$v = \sqrt{2 \times \frac{3g}{7} \times h} = \sqrt{8.4h}$ or $v^2 = 2 \times \frac{3g}{7} \times h$ (= 8.4h)	M1	1.1b	
		$0 = \frac{6gh}{7} - 2gH$	M1	1.1b	
		$H = \frac{3h}{7}$	A1	1.1b	
		Total height = $2h + h + H$	M1	2.1	
		Total height = $\frac{24h}{7}$	A1	1.1b	
			(7)		
3	(c)	e.g. The distance that Q falls to the ground would not be exactly h oe	B1	3.5b	
			(1)		
3(d)		 e.g. The accelerations of the balls would not have equal magnitude (allow 'wouldn't be the same' oe) B0 if they say 'inextensible => acceleration same' 	B1	3.5a	
			(1)		
		1	(13 n	narks)	
Notes:					
3 a	M1	Translate situation into the model and set up the equation of motion for T and a)	P (must c	ontain	
	A1	Correct equation			
	M1	Translate situation into the model and set up the equation of motion for T and a)	Q(must c	ontain	
	A1	Correct equation			
		N.B. Allow the above 4 marks if the equations appear in (b).			

		If <i>m</i> 's are omitted consistently, max (a) M1A0M1A0 (b)M1A0M1M1A1M1A0	
3b	M1	Solve for <i>a</i>	
	A1	Allow 4.2 (m s ^{-2}) or must be in terms of g only.	
		N.B. Allow the above 2 marks if they appear in (a).	
	M1	Complete method to produce an expression for v or v^2 in terms h, using their a	
	M1	Complete method to produce an expression for <i>H</i> in terms of <i>h</i> , using $a = -g$ and $v = 0$	
	A1	Correct expression for H	
	M1	Complete method to find the total distance	
	A1	cao but allow 3.4 <i>h</i> or better	
3 c	B1	B0 if any incorrect extras are given	
3d	B1	B0 if any incorrect extras are given or for an incorrect statement e.g. tension is not constant so accelerations will be different	