Question	Scheme	Marks	AOs
3 (a)	Differentiate s wrt t	M1	3.1a
	$(v =) t^2 - 5t + 6$	A1	1.1b
	Equate their v to 0 and solve	M1	1.1b
	t = 2 or 3	A1	1.1b
	(a =) 2t - 5	B1 ft	2.1
	a = 1 and -1 (m s ⁻²) isw (A0 if extras)	A1	1.1b
		(6)	
(b)	Attempt to find values of <i>s</i> for $t = 2, 3 and 4$ oe	DM 1	1.1b
	Correct values are $\left(s_2 = \frac{14}{3}, s_3 = \frac{9}{2} \text{ and } s_4 = \frac{16}{3}\right)$		
	Could be implied by correct values for:		
	s_2 , $(s_3 - s_2)$ and $(s_4 - s_3)$ which are $\frac{14}{3}$, $(-\frac{1}{6})$ and $\frac{5}{6}$		
	Total distance travelled		
	$= s_2 + (s_2 - s_3) + s_4 - s_3$	M1	2.1
	OR $s_2 - (s_3 - s_2) + s_4 - s_3$		
	OR $\left[\frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t\right]_0^2 - \left[\frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t\right]_2^3 + \left[\frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t\right]_3^4$		
	OR $\frac{14}{3}$ - $(-\frac{1}{6})$ + $\frac{5}{6}$		
	OR $s_2 + 2(s_2 - s_3) + s_4 - s_2$		
	$(=2s_2-2s_3+s_4)$ oe		
	$5\frac{2}{3}$ oe (m) Accept 5.7 or better	A1	1.1b
		(3)	
	(9 marks)		

Notes:		
3a	M1	Differentiate, with at least 2 powers decreasing by 1
	A1	Correct expression
	M1	Must have attempted to differentiate s to find v and be solving a 3 term quadratic
	A1	Both values needed
	B1 ft	Follow their <i>v</i> (must be differentiating)

	A1	cao	
3b	DM 1	This mark is dependent on the 2^{nd} M1 in part (a) and their <i>t</i> values are between 0 and 4. Clear attempt to find all three <i>s</i> values (may integrate their <i>v</i> incorrectly) N.B. No penalty for extra values.	
	M 1	Complete method using their <i>s</i> values Do NOT condone sign errors.	
	A1	Any equivalent fraction, 5.7 or better.	
		S.C. Correct answer, with no working, scores all 3 marks, since $\int_{0}^{4} t^2 - 5t + 6 dt$ entered on a calculator will give $\frac{17}{3}$	